\left\{ \begin{array} { l } { \frac { x } { 2 } + \frac { y } { 6 } = 1 \frac { 1 } { 2 } } \\ { \frac { 2 x } { 5 } - \frac { y } { 3 } = - \frac { 1 } { 5 } } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=2
y=3
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3x+y=3\left(1\times 2+1\right)
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 2,6 ৰ সাধাৰণ বিভাজক৷
3x+y=3\left(2+1\right)
2 লাভ কৰিবৰ বাবে 1 আৰু 2 পুৰণ কৰক৷
3x+y=3\times 3
3 লাভ কৰিবৰ বাবে 2 আৰু 1 যোগ কৰক৷
3x+y=9
9 লাভ কৰিবৰ বাবে 3 আৰু 3 পুৰণ কৰক৷
3\times 2x-5y=-3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 15ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 5,3 ৰ সাধাৰণ বিভাজক৷
6x-5y=-3
6 লাভ কৰিবৰ বাবে 3 আৰু 2 পুৰণ কৰক৷
3x+y=9,6x-5y=-3
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x+y=9
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=-y+9
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=\frac{1}{3}\left(-y+9\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{3}y+3
\frac{1}{3} বাৰ -y+9 পুৰণ কৰক৷
6\left(-\frac{1}{3}y+3\right)-5y=-3
অন্য সমীকৰণত x-ৰ বাবে -\frac{y}{3}+3 স্থানাপন কৰক, 6x-5y=-3৷
-2y+18-5y=-3
6 বাৰ -\frac{y}{3}+3 পুৰণ কৰক৷
-7y+18=-3
-5y লৈ -2y যোগ কৰক৷
-7y=-21
সমীকৰণৰ দুয়োটা দিশৰ পৰা 18 বিয়োগ কৰক৷
y=3
-7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{3}\times 3+3
x=-\frac{1}{3}y+3-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-1+3
-\frac{1}{3} বাৰ 3 পুৰণ কৰক৷
x=2
-1 লৈ 3 যোগ কৰক৷
x=2,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x+y=3\left(1\times 2+1\right)
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 2,6 ৰ সাধাৰণ বিভাজক৷
3x+y=3\left(2+1\right)
2 লাভ কৰিবৰ বাবে 1 আৰু 2 পুৰণ কৰক৷
3x+y=3\times 3
3 লাভ কৰিবৰ বাবে 2 আৰু 1 যোগ কৰক৷
3x+y=9
9 লাভ কৰিবৰ বাবে 3 আৰু 3 পুৰণ কৰক৷
3\times 2x-5y=-3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 15ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 5,3 ৰ সাধাৰণ বিভাজক৷
6x-5y=-3
6 লাভ কৰিবৰ বাবে 3 আৰু 2 পুৰণ কৰক৷
3x+y=9,6x-5y=-3
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&1\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-3\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&1\\6&-5\end{matrix}\right))\left(\begin{matrix}3&1\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&-5\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
\left(\begin{matrix}3&1\\6&-5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&-5\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&-5\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-6}&-\frac{1}{3\left(-5\right)-6}\\-\frac{6}{3\left(-5\right)-6}&\frac{3}{3\left(-5\right)-6}\end{matrix}\right)\left(\begin{matrix}9\\-3\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&\frac{1}{21}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}9\\-3\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\times 9+\frac{1}{21}\left(-3\right)\\\frac{2}{7}\times 9-\frac{1}{7}\left(-3\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
গণনা কৰক৷
x=2,y=3
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x+y=3\left(1\times 2+1\right)
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 2,6 ৰ সাধাৰণ বিভাজক৷
3x+y=3\left(2+1\right)
2 লাভ কৰিবৰ বাবে 1 আৰু 2 পুৰণ কৰক৷
3x+y=3\times 3
3 লাভ কৰিবৰ বাবে 2 আৰু 1 যোগ কৰক৷
3x+y=9
9 লাভ কৰিবৰ বাবে 3 আৰু 3 পুৰণ কৰক৷
3\times 2x-5y=-3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 15ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 5,3 ৰ সাধাৰণ বিভাজক৷
6x-5y=-3
6 লাভ কৰিবৰ বাবে 3 আৰু 2 পুৰণ কৰক৷
3x+y=9,6x-5y=-3
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
6\times 3x+6y=6\times 9,3\times 6x+3\left(-5\right)y=3\left(-3\right)
3x আৰু 6x সমান কৰিবৰ বাবে, 6-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
18x+6y=54,18x-15y=-9
সৰলীকৰণ৷
18x-18x+6y+15y=54+9
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 18x+6y=54-ৰ পৰা 18x-15y=-9 হৰণ কৰক৷
6y+15y=54+9
-18x লৈ 18x যোগ কৰক৷ চৰ্তাৱলী 18x আৰু -18x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
21y=54+9
15y লৈ 6y যোগ কৰক৷
21y=63
9 লৈ 54 যোগ কৰক৷
y=3
21-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
6x-5\times 3=-3
6x-5y=-3-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
6x-15=-3
-5 বাৰ 3 পুৰণ কৰক৷
6x=12
সমীকৰণৰ দুয়োটা দিশতে 15 যোগ কৰক৷
x=2
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=2,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}