মুখ্য সমললৈ এৰি যাওক
x, m-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x-m=3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা m বিয়োগ কৰক৷
3x-2m=-1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2m বিয়োগ কৰক৷
x-m=3,3x-2m=-1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x-m=3
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=m+3
সমীকৰণৰ দুয়োটা দিশতে m যোগ কৰক৷
3\left(m+3\right)-2m=-1
অন্য সমীকৰণত x-ৰ বাবে m+3 স্থানাপন কৰক, 3x-2m=-1৷
3m+9-2m=-1
3 বাৰ m+3 পুৰণ কৰক৷
m+9=-1
-2m লৈ 3m যোগ কৰক৷
m=-10
সমীকৰণৰ দুয়োটা দিশৰ পৰা 9 বিয়োগ কৰক৷
x=-10+3
x=m+3-ত m-ৰ বাবে -10-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-7
-10 লৈ 3 যোগ কৰক৷
x=-7,m=-10
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-m=3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা m বিয়োগ কৰক৷
3x-2m=-1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2m বিয়োগ কৰক৷
x-m=3,3x-2m=-1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}1&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
\left(\begin{matrix}1&-1\\3&-2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-3\right)}&-\frac{-1}{-2-\left(-3\right)}\\-\frac{3}{-2-\left(-3\right)}&\frac{1}{-2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}-2&1\\-3&1\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}-2\times 3-1\\-3\times 3-1\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}-7\\-10\end{matrix}\right)
গণনা কৰক৷
x=-7,m=-10
মেট্ৰিক্স উপাদান x আৰু m নিষ্কাষিত কৰক৷
x-m=3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা m বিয়োগ কৰক৷
3x-2m=-1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2m বিয়োগ কৰক৷
x-m=3,3x-2m=-1
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3x+3\left(-1\right)m=3\times 3,3x-2m=-1
x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
3x-3m=9,3x-2m=-1
সৰলীকৰণ৷
3x-3x-3m+2m=9+1
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3x-3m=9-ৰ পৰা 3x-2m=-1 হৰণ কৰক৷
-3m+2m=9+1
-3x লৈ 3x যোগ কৰক৷ চৰ্তাৱলী 3x আৰু -3x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-m=9+1
2m লৈ -3m যোগ কৰক৷
-m=10
1 লৈ 9 যোগ কৰক৷
m=-10
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x-2\left(-10\right)=-1
3x-2m=-1-ত m-ৰ বাবে -10-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x+20=-1
-2 বাৰ -10 পুৰণ কৰক৷
3x=-21
সমীকৰণৰ দুয়োটা দিশৰ পৰা 20 বিয়োগ কৰক৷
x=-7
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-7,m=-10
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷