মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\int _{0}^{1}x^{2}\left(x^{2}-8x+16\right)\mathrm{d}x
\left(x-4\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
\int _{0}^{1}x^{4}-8x^{3}+16x^{2}\mathrm{d}x
x^{2}ক x^{2}-8x+16ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\int x^{4}-8x^{3}+16x^{2}\mathrm{d}x
প্ৰথমতে ইনডেফিনিট ইণ্টেগ্ৰেল মূল্যাংকন কৰক।
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
এটা এটা কৰি মুঠ যোগ কৰক।
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
প্ৰতিটো পদৰ ধ্ৰুৱক গুণনীয় বিচাৰি উলিওৱাক।
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{5}}{5}-ৰ লগত \int x^{4}\mathrm{d}x-ৰ সলনি।
\frac{x^{5}}{5}-2x^{4}+16\int x^{2}\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{4}}{4}-ৰ লগত \int x^{3}\mathrm{d}x-ৰ সলনি। -8 বাৰ \frac{x^{4}}{4} পুৰণ কৰক৷
\frac{x^{5}}{5}-2x^{4}+\frac{16x^{3}}{3}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{3}}{3}-ৰ লগত \int x^{2}\mathrm{d}x-ৰ সলনি। 16 বাৰ \frac{x^{3}}{3} পুৰণ কৰক৷
\frac{16x^{3}}{3}-2x^{4}+\frac{x^{5}}{5}
সৰলীকৰণ৷
\frac{16}{3}\times 1^{3}-2\times 1^{4}+\frac{1^{5}}{5}-\left(\frac{16}{3}\times 0^{3}-2\times 0^{4}+\frac{0^{5}}{5}\right)
ডেফিনিট ইণ্টেগ্ৰেল হৈছে ইণ্টিগ্ৰেশ্বনৰ ওপৰৰ সীমাত মূল্যাঙ্কন কৰা অভিব্যক্তিৰ এণ্টিডেৰিভেটিভ বিয়োগ ইণ্টিগ্ৰেশ্বনৰ নিম্ন সীমাত মূল্যাঙ্কন কৰা এণ্টিডেৰিভেটিভ।
\frac{53}{15}
সৰলীকৰণ৷