মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\int -3x^{2}\left(64\left(x^{3}\right)^{3}+192\left(x^{3}\right)^{2}+192x^{3}+64\right)\mathrm{d}x
\left(4x^{3}+4\right)^{3} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} ব্যৱহাৰ কৰক৷
\int -3x^{2}\left(64x^{9}+192\left(x^{3}\right)^{2}+192x^{3}+64\right)\mathrm{d}x
এটা পাৱাৰ আন এটা পাৱাৰত বঢ়াবলৈ, ঘাতসমূহ পূৰণ কৰক। 9 পাবলৈ 3 আৰু 3 পূৰণ কৰক।
\int -3x^{2}\left(64x^{9}+192x^{6}+192x^{3}+64\right)\mathrm{d}x
এটা পাৱাৰ আন এটা পাৱাৰত বঢ়াবলৈ, ঘাতসমূহ পূৰণ কৰক। 6 পাবলৈ 3 আৰু 2 পূৰণ কৰক।
\int -192x^{11}-576x^{8}-576x^{5}-192x^{2}\mathrm{d}x
-3x^{2}ক 64x^{9}+192x^{6}+192x^{3}+64ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\int -192x^{11}\mathrm{d}x+\int -576x^{8}\mathrm{d}x+\int -576x^{5}\mathrm{d}x+\int -192x^{2}\mathrm{d}x
এটা এটা কৰি মুঠ যোগ কৰক।
-192\int x^{11}\mathrm{d}x-576\int x^{8}\mathrm{d}x-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
প্ৰতিটো পদৰ ধ্ৰুৱক গুণনীয় বিচাৰি উলিওৱাক।
-16x^{12}-576\int x^{8}\mathrm{d}x-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{12}}{12}-ৰ লগত \int x^{11}\mathrm{d}x-ৰ সলনি। -192 বাৰ \frac{x^{12}}{12} পুৰণ কৰক৷
-16x^{12}-64x^{9}-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{9}}{9}-ৰ লগত \int x^{8}\mathrm{d}x-ৰ সলনি। -576 বাৰ \frac{x^{9}}{9} পুৰণ কৰক৷
-16x^{12}-64x^{9}-96x^{6}-192\int x^{2}\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{6}}{6}-ৰ লগত \int x^{5}\mathrm{d}x-ৰ সলনি। -576 বাৰ \frac{x^{6}}{6} পুৰণ কৰক৷
-16x^{12}-64x^{9}-96x^{6}-64x^{3}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{3}}{3}-ৰ লগত \int x^{2}\mathrm{d}x-ৰ সলনি। -192 বাৰ \frac{x^{3}}{3} পুৰণ কৰক৷
-64x^{3}-96x^{6}-64x^{9}-16x^{12}+С
যদি F\left(x\right)-এ f\left(x\right)-ৰ এটা অনিশ্চত অনুকলন হয় তেনেহ’লে f\left(x\right)-ৰ সকলো অনিশ্চত অনুকলন F\left(x\right)+C-ৰ পৰা আহে। সেইবাবে, ধ্ৰুৱক অনুকলন C\in \mathrm{R} ফলাফলৰ লগত যোগ কৰক।