মূল্যায়ন
A_{8}\left(\frac{x^{3}y^{6}}{3}+\frac{3y^{2}x^{7}}{7}+\frac{3y^{4}x^{5}}{5}+\frac{x^{9}}{9}\right)+СA_{8}+С_{1}
ডিফাৰেনচিয়েট w.r.t. x
A_{8}x^{2}\left(x^{2}+y^{2}\right)^{3}
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\int x^{2}\left(x^{2}+y^{2}\right)^{3}\mathrm{d}xA_{8}
অখণ্ড সংখ্যাবোৰৰ সাধাৰণ তালিকাৰ \int a\mathrm{d}A_{8}=aA_{8} নীতি অনুসাৰি \int x^{2}\left(x^{2}+y^{2}\right)^{3}\mathrm{d}x-ৰ অনুকলন বিচাৰি পাওক।
\left(\frac{y^{6}x^{3}}{3}+\frac{3y^{4}x^{5}}{5}+\frac{3y^{2}x^{7}}{7}+\frac{x^{9}}{9}+С\right)A_{8}
সৰলীকৰণ৷
\left(\frac{y^{6}x^{3}}{3}+\frac{3y^{4}x^{5}}{5}+\frac{3y^{2}x^{7}}{7}+\frac{x^{9}}{9}+С\right)A_{8}+С
যদি F\left(A_{8}\right)-এ f\left(A_{8}\right)-ৰ এটা অনিশ্চত অনুকলন হয় তেনেহ’লে f\left(A_{8}\right)-ৰ সকলো অনিশ্চত অনুকলন F\left(A_{8}\right)+C-ৰ পৰা আহে। সেইবাবে, ধ্ৰুৱক অনুকলন C\in \mathrm{R} ফলাফলৰ লগত যোগ কৰক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}