মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\int \frac{x^{3}}{4}\mathrm{d}x+\int -\frac{x^{2}}{3}\mathrm{d}x+\int \frac{x}{2}\mathrm{d}x
এটা এটা কৰি মুঠ যোগ কৰক।
\frac{\int x^{3}\mathrm{d}x}{4}-\frac{\int x^{2}\mathrm{d}x}{3}+\frac{\int x\mathrm{d}x}{2}
প্ৰতিটো পদৰ ধ্ৰুৱক গুণনীয় বিচাৰি উলিওৱাক।
\frac{x^{4}}{16}-\frac{\int x^{2}\mathrm{d}x}{3}+\frac{\int x\mathrm{d}x}{2}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{4}}{4}-ৰ লগত \int x^{3}\mathrm{d}x-ৰ সলনি। \frac{1}{4} বাৰ \frac{x^{4}}{4} পুৰণ কৰক৷
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{\int x\mathrm{d}x}{2}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{3}}{3}-ৰ লগত \int x^{2}\mathrm{d}x-ৰ সলনি। -\frac{1}{3} বাৰ \frac{x^{3}}{3} পুৰণ কৰক৷
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{x^{2}}{4}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{2}}{2}-ৰ লগত \int x\mathrm{d}x-ৰ সলনি। \frac{1}{2} বাৰ \frac{x^{2}}{2} পুৰণ কৰক৷
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{x^{2}}{4}+С
যদি F\left(x\right)-এ f\left(x\right)-ৰ এটা অনিশ্চত অনুকলন হয় তেনেহ’লে f\left(x\right)-ৰ সকলো অনিশ্চত অনুকলন F\left(x\right)+C-ৰ পৰা আহে। সেইবাবে, ধ্ৰুৱক অনুকলন C\in \mathrm{R} ফলাফলৰ লগত যোগ কৰক।