মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\int 3x^{5}-2x^{3}+x\mathrm{d}x
প্ৰথমতে ইনডেফিনিট ইণ্টেগ্ৰেল মূল্যাংকন কৰক।
\int 3x^{5}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int x\mathrm{d}x
এটা এটা কৰি মুঠ যোগ কৰক।
3\int x^{5}\mathrm{d}x-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
প্ৰতিটো পদৰ ধ্ৰুৱক গুণনীয় বিচাৰি উলিওৱাক।
\frac{x^{6}}{2}-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{6}}{6}-ৰ লগত \int x^{5}\mathrm{d}x-ৰ সলনি। 3 বাৰ \frac{x^{6}}{6} পুৰণ কৰক৷
\frac{x^{6}}{2}-\frac{x^{4}}{2}+\int x\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{4}}{4}-ৰ লগত \int x^{3}\mathrm{d}x-ৰ সলনি। -2 বাৰ \frac{x^{4}}{4} পুৰণ কৰক৷
\frac{x^{6}-x^{4}+x^{2}}{2}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{2}}{2}-ৰ লগত \int x\mathrm{d}x-ৰ সলনি।
\frac{4^{6}}{2}-\frac{4^{4}}{2}+\frac{4^{2}}{2}-\left(\frac{2^{6}}{2}-\frac{2^{4}}{2}+\frac{2^{2}}{2}\right)
ডেফিনিট ইণ্টেগ্ৰেল হৈছে ইণ্টিগ্ৰেশ্বনৰ ওপৰৰ সীমাত মূল্যাঙ্কন কৰা অভিব্যক্তিৰ এণ্টিডেৰিভেটিভ বিয়োগ ইণ্টিগ্ৰেশ্বনৰ নিম্ন সীমাত মূল্যাঙ্কন কৰা এণ্টিডেৰিভেটিভ।
1902
সৰলীকৰণ৷