মূল্যায়ন
\frac{fx^{2}}{2}
ডিফাৰেনচিয়েট w.r.t. x
fx
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\int ft\mathrm{d}t
প্ৰথমতে ইনডেফিনিট ইণ্টেগ্ৰেল মূল্যাংকন কৰক।
f\int t\mathrm{d}t
\int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t নিৰন্তৰে ব্যৱহাৰ কৰাৰ কাৰণ বিচাৰি উলিওৱা।
f\times \frac{t^{2}}{2}
k\neq -1-ৰ বাবে \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1}-ৰ পৰা, \frac{t^{2}}{2}-ৰ লগত \int t\mathrm{d}t-ৰ সলনি।
\frac{ft^{2}}{2}
সৰলীকৰণ৷
\frac{1}{2}fx^{2}-\frac{1}{2}f\times 0^{2}
ডেফিনিট ইণ্টেগ্ৰেল হৈছে ইণ্টিগ্ৰেশ্বনৰ ওপৰৰ সীমাত মূল্যাঙ্কন কৰা অভিব্যক্তিৰ এণ্টিডেৰিভেটিভ বিয়োগ ইণ্টিগ্ৰেশ্বনৰ নিম্ন সীমাত মূল্যাঙ্কন কৰা এণ্টিডেৰিভেটিভ।
\frac{fx^{2}}{2}
সৰলীকৰণ৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}