মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\int _{0}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
\left(4x-x^{3}\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
\int _{0}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 4 পাবলৈ 1 আৰু 3 যোগ কৰক।
\int _{0}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
এটা পাৱাৰ আন এটা পাৱাৰত বঢ়াবলৈ, ঘাতসমূহ পূৰণ কৰক। 6 পাবলৈ 3 আৰু 2 পূৰণ কৰক।
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
প্ৰথমতে ইনডেফিনিট ইণ্টেগ্ৰেল মূল্যাংকন কৰক।
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
এটা এটা কৰি মুঠ যোগ কৰক।
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
প্ৰতিটো পদৰ ধ্ৰুৱক গুণনীয় বিচাৰি উলিওৱাক।
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{3}}{3}-ৰ লগত \int x^{2}\mathrm{d}x-ৰ সলনি। 16 বাৰ \frac{x^{3}}{3} পুৰণ কৰক৷
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{5}}{5}-ৰ লগত \int x^{4}\mathrm{d}x-ৰ সলনি। -8 বাৰ \frac{x^{5}}{5} পুৰণ কৰক৷
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{7}}{7}-ৰ লগত \int x^{6}\mathrm{d}x-ৰ সলনি।
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
সৰলীকৰণ৷
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{0^{7}}{7}-\frac{8}{5}\times 0^{5}+\frac{16}{3}\times 0^{3}\right)
ডেফিনিট ইণ্টেগ্ৰেল হৈছে ইণ্টিগ্ৰেশ্বনৰ ওপৰৰ সীমাত মূল্যাঙ্কন কৰা অভিব্যক্তিৰ এণ্টিডেৰিভেটিভ বিয়োগ ইণ্টিগ্ৰেশ্বনৰ নিম্ন সীমাত মূল্যাঙ্কন কৰা এণ্টিডেৰিভেটিভ।
\frac{1024}{105}
সৰলীকৰণ৷