মূল্যায়ন
\frac{1561}{3}\approx 520.333333333
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\int _{-2}^{5}16x^{2}-24x+9\mathrm{d}x
\left(4x-3\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
\int 16x^{2}-24x+9\mathrm{d}x
প্ৰথমতে ইনডেফিনিট ইণ্টেগ্ৰেল মূল্যাংকন কৰক।
\int 16x^{2}\mathrm{d}x+\int -24x\mathrm{d}x+\int 9\mathrm{d}x
এটা এটা কৰি মুঠ যোগ কৰক।
16\int x^{2}\mathrm{d}x-24\int x\mathrm{d}x+\int 9\mathrm{d}x
প্ৰতিটো পদৰ ধ্ৰুৱক গুণনীয় বিচাৰি উলিওৱাক।
\frac{16x^{3}}{3}-24\int x\mathrm{d}x+\int 9\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{3}}{3}-ৰ লগত \int x^{2}\mathrm{d}x-ৰ সলনি। 16 বাৰ \frac{x^{3}}{3} পুৰণ কৰক৷
\frac{16x^{3}}{3}-12x^{2}+\int 9\mathrm{d}x
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{2}}{2}-ৰ লগত \int x\mathrm{d}x-ৰ সলনি। -24 বাৰ \frac{x^{2}}{2} পুৰণ কৰক৷
\frac{16x^{3}}{3}-12x^{2}+9x
অখণ্ড সংখ্যাবোৰৰ সাধাৰণ তালিকাৰ \int a\mathrm{d}x=ax নীতি অনুসাৰি 9-ৰ অনুকলন বিচাৰি পাওক।
\frac{16}{3}\times 5^{3}-12\times 5^{2}+9\times 5-\left(\frac{16}{3}\left(-2\right)^{3}-12\left(-2\right)^{2}+9\left(-2\right)\right)
ডেফিনিট ইণ্টেগ্ৰেল হৈছে ইণ্টিগ্ৰেশ্বনৰ ওপৰৰ সীমাত মূল্যাঙ্কন কৰা অভিব্যক্তিৰ এণ্টিডেৰিভেটিভ বিয়োগ ইণ্টিগ্ৰেশ্বনৰ নিম্ন সীমাত মূল্যাঙ্কন কৰা এণ্টিডেৰিভেটিভ।
\frac{1561}{3}
সৰলীকৰণ৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}