মূল্যায়ন
-\frac{\sqrt{2}}{80}+\frac{1}{10}\approx 0.08232233
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\int x^{4}-\frac{x^{4}}{2}\mathrm{d}x
প্ৰথমতে ইনডেফিনিট ইণ্টেগ্ৰেল মূল্যাংকন কৰক।
\int x^{4}\mathrm{d}x+\int -\frac{x^{4}}{2}\mathrm{d}x
এটা এটা কৰি মুঠ যোগ কৰক।
\int x^{4}\mathrm{d}x-\frac{\int x^{4}\mathrm{d}x}{2}
প্ৰতিটো পদৰ ধ্ৰুৱক গুণনীয় বিচাৰি উলিওৱাক।
\frac{x^{5}}{5}-\frac{\int x^{4}\mathrm{d}x}{2}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{5}}{5}-ৰ লগত \int x^{4}\mathrm{d}x-ৰ সলনি।
\frac{x^{5}}{5}-\frac{x^{5}}{10}
k\neq -1-ৰ বাবে \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}-ৰ পৰা, \frac{x^{5}}{5}-ৰ লগত \int x^{4}\mathrm{d}x-ৰ সলনি। -\frac{1}{2} বাৰ \frac{x^{5}}{5} পুৰণ কৰক৷
\frac{x^{5}}{10}
সৰলীকৰণ৷
\frac{1^{5}}{10}-\frac{1}{10}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}
ডেফিনিট ইণ্টেগ্ৰেল হৈছে ইণ্টিগ্ৰেশ্বনৰ ওপৰৰ সীমাত মূল্যাঙ্কন কৰা অভিব্যক্তিৰ এণ্টিডেৰিভেটিভ বিয়োগ ইণ্টিগ্ৰেশ্বনৰ নিম্ন সীমাত মূল্যাঙ্কন কৰা এণ্টিডেৰিভেটিভ।
\frac{1}{10}-\frac{\sqrt{2}}{80}
সৰলীকৰণ৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}