মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+\frac{10000}{x})
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে x সমান কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x}{x}+\frac{10000}{x})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 2x^{2} বাৰ \frac{x}{x} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x+10000}{x})
যিহেতু \frac{2x^{2}x}{x} আৰু \frac{10000}{x}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{3}+10000}{x})
2x^{2}x+10000ত গুণনিয়ক কৰক৷
\left(2x^{3}+10000\right)\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+10000)
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ গুণফলৰ ডিৰাইভেটিভ হৈছে প্ৰথম ফাংচনে দ্বিতীয়টোৰ ডিৰাইভেটিভক বৃদ্ধি কৰে লগতে দ্বিতীয় ফাংচনে প্ৰথমটোৰ ডিৰাইউভেটিভক বৃদ্ধি কৰে৷
\left(2x^{3}+10000\right)\left(-1\right)x^{-1-1}+\frac{1}{x}\times 3\times 2x^{3-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\left(2x^{3}+10000\right)\left(-1\right)x^{-2}+\frac{1}{x}\times 6x^{2}
সৰলীকৰণ৷
2x^{3}\left(-1\right)x^{-2}+10000\left(-1\right)x^{-2}+\frac{1}{x}\times 6x^{2}
2x^{3}+10000 বাৰ -x^{-2} পুৰণ কৰক৷
-2x^{3-2}-10000x^{-2}+6x^{-1+2}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
-2x^{1}-10000x^{-2}+6x^{1}
সৰলীকৰণ৷
-2x-10000x^{-2}+6x
যিকোনো পদৰ বাবে t, t^{1}=t।
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+\frac{10000}{x})
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে x সমান কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x}{x}+\frac{10000}{x})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 2x^{2} বাৰ \frac{x}{x} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x+10000}{x})
যিহেতু \frac{2x^{2}x}{x} আৰু \frac{10000}{x}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{3}+10000}{x})
2x^{2}x+10000ত গুণনিয়ক কৰক৷
\frac{x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+10000)-\left(2x^{3}+10000\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})}{\left(x^{1}\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{x^{1}\times 3\times 2x^{3-1}-\left(2x^{3}+10000\right)x^{1-1}}{\left(x^{1}\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{x^{1}\times 6x^{2}-\left(2x^{3}+10000\right)x^{0}}{\left(x^{1}\right)^{2}}
গণনা কৰক৷
\frac{x^{1}\times 6x^{2}-\left(2x^{3}x^{0}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
বিতৰক উপাদান বিস্তাৰ কৰক।
\frac{6x^{1+2}-\left(2x^{3}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{6x^{3}-\left(2x^{3}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
গণনা কৰক৷
\frac{6x^{3}-2x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
অনাবশ্যকীয় বন্ধনীসমূহ আঁতৰাওক৷
\frac{\left(6-2\right)x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
একে পদসমূহ একলগ কৰক।
\frac{4x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
6-ৰ পৰা 2 বিয়োগ কৰক৷
\frac{4\left(x^{3}-2500x^{0}\right)}{\left(x^{1}\right)^{2}}
4ৰ গুণনীয়ক উলিয়াওক।
\frac{4\left(x^{3}-2500x^{0}\right)}{1^{2}x^{2}}
এটা পাৱাৰলৈ দুটা বা তাতোধিক সংখ্যাৰ গুণফল বৃদ্ধি কৰিবলৈ, প্ৰতিটো সংখ্যা পাৱাৰলৈ বৃদ্ধি কৰক আৰু ইয়াৰ গুণফলটো লওক৷
\frac{4\left(x^{3}-2500x^{0}\right)}{x^{2}}
পাৱাৰ 2-লৈ 1 বৃদ্ধি কৰক৷
\frac{4\left(x^{3}-2500\times 1\right)}{x^{2}}
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।
\frac{4\left(x^{3}-2500\right)}{x^{2}}
যিকোনো পদৰ বাবে t, t\times 1=t আৰু 1t=t।