মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{2}-2\right)\times 2}{x-5})
এটা একক ভগ্নাংশ ৰূপে \frac{3x^{2}-2}{x-5}\times 2 প্ৰকাশ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x^{2}-4}{x-5})
3x^{2}-2ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{2}-4)-\left(6x^{2}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(x^{1}-5\right)\times 2\times 6x^{2-1}-\left(6x^{2}-4\right)x^{1-1}}{\left(x^{1}-5\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(x^{1}-5\right)\times 12x^{1}-\left(6x^{2}-4\right)x^{0}}{\left(x^{1}-5\right)^{2}}
গণনা কৰক৷
\frac{x^{1}\times 12x^{1}-5\times 12x^{1}-\left(6x^{2}x^{0}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
বিতৰক উপাদান বিস্তাৰ কৰক।
\frac{12x^{1+1}-5\times 12x^{1}-\left(6x^{2}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{12x^{2}-60x^{1}-\left(6x^{2}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
গণনা কৰক৷
\frac{12x^{2}-60x^{1}-6x^{2}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
অনাবশ্যকীয় বন্ধনীসমূহ আঁতৰাওক৷
\frac{\left(12-6\right)x^{2}-60x^{1}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
একে পদসমূহ একলগ কৰক।
\frac{6x^{2}-60x^{1}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
12-ৰ পৰা 6 বিয়োগ কৰক৷
\frac{6x^{2}-60x-\left(-4x^{0}\right)}{\left(x-5\right)^{2}}
যিকোনো পদৰ বাবে t, t^{1}=t।
\frac{6x^{2}-60x-\left(-4\right)}{\left(x-5\right)^{2}}
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।