মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{3x^{2}}{2x\left(6x+10\right)}
নিউমাৰেটৰ সময়ক নিউমাৰেটৰৰে আৰু ডেনোমিনেটৰ সময়ক ডেনোমিনেটেৰে পূৰণ কৰি \frac{3}{2x} বাৰ \frac{x^{2}}{6x+10} পূৰণ কৰক৷
\frac{3x}{2\left(6x+10\right)}
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে x সমান কৰক৷
\frac{3x}{12x+20}
2ক 6x+10ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x^{2}}{2x\left(6x+10\right)})
নিউমাৰেটৰ সময়ক নিউমাৰেটৰৰে আৰু ডেনোমিনেটৰ সময়ক ডেনোমিনেটেৰে পূৰণ কৰি \frac{3}{2x} বাৰ \frac{x^{2}}{6x+10} পূৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{2\left(6x+10\right)})
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে x সমান কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{12x+20})
2ক 6x+10ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{\left(12x^{1}+20\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(12x^{1}+20)}{\left(12x^{1}+20\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(12x^{1}+20\right)\times 3x^{1-1}-3x^{1}\times 12x^{1-1}}{\left(12x^{1}+20\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(12x^{1}+20\right)\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
গণনা কৰক৷
\frac{12x^{1}\times 3x^{0}+20\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
বিতৰক উপাদান বিস্তাৰ কৰক।
\frac{12\times 3x^{1}+20\times 3x^{0}-3\times 12x^{1}}{\left(12x^{1}+20\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{36x^{1}+60x^{0}-36x^{1}}{\left(12x^{1}+20\right)^{2}}
গণনা কৰক৷
\frac{\left(36-36\right)x^{1}+60x^{0}}{\left(12x^{1}+20\right)^{2}}
একে পদসমূহ একলগ কৰক।
\frac{60x^{0}}{\left(12x^{1}+20\right)^{2}}
36-ৰ পৰা 36 বিয়োগ কৰক৷
\frac{60x^{0}}{\left(12x+20\right)^{2}}
যিকোনো পদৰ বাবে t, t^{1}=t।
\frac{60\times 1}{\left(12x+20\right)^{2}}
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।
\frac{60}{\left(12x+20\right)^{2}}
যিকোনো পদৰ বাবে t, t\times 1=t আৰু 1t=t।