ডিফাৰেনচিয়েট w.r.t. x
2
মূল্যায়ন
2x
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2})
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ গুণফলৰ ডিৰাইভেটিভ হৈছে প্ৰথম ফাংচনে দ্বিতীয়টোৰ ডিৰাইভেটিভক বৃদ্ধি কৰে লগতে দ্বিতীয় ফাংচনে প্ৰথমটোৰ ডিৰাইউভেটিভক বৃদ্ধি কৰে৷
2x^{2}\left(-1\right)x^{-1-1}+\frac{1}{x}\times 2\times 2x^{2-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
2x^{2}\left(-1\right)x^{-2}+\frac{1}{x}\times 4x^{1}
সৰলীকৰণ৷
-2x^{2-2}+4x^{-1+1}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
-2x^{0}+4x^{0}
সৰলীকৰণ৷
-2+4\times 1
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।
-2+4
যিকোনো পদৰ বাবে t, t\times 1=t আৰু 1t=t।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{1}x^{2-1})
একেটা বেছৰ পাৱাৰ ভাগ কৰিবৰ বাবে, ডিনোমিনেটৰৰ প্ৰতিপাদকক নিউমাৰেটৰৰ প্ৰতিপাদকৰ পৰা বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})
গণনা কৰক৷
2x^{1-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
2x^{0}
গণনা কৰক৷
2\times 1
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।
2
যিকোনো পদৰ বাবে t, t\times 1=t আৰু 1t=t।
2x
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে x সমান কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}