মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ x+2 আৰু x-3ৰ সাধাৰণ গুণফল হৈছে \left(x-3\right)\left(x+2\right)৷ \frac{2}{x+2} বাৰ \frac{x-3}{x-3} পুৰণ কৰক৷ \frac{7}{x-3} বাৰ \frac{x+2}{x+2} পুৰণ কৰক৷
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
যিহেতু \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} আৰু \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
2\left(x-3\right)-7\left(x+2\right)ত গুণনিয়ক কৰক৷
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
2x-6-7x-14ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{-5x-20}{x^{2}-x-6}
\left(x-3\right)\left(x+2\right) বিস্তাৰ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ x+2 আৰু x-3ৰ সাধাৰণ গুণফল হৈছে \left(x-3\right)\left(x+2\right)৷ \frac{2}{x+2} বাৰ \frac{x-3}{x-3} পুৰণ কৰক৷ \frac{7}{x-3} বাৰ \frac{x+2}{x+2} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
যিহেতু \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} আৰু \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
2\left(x-3\right)-7\left(x+2\right)ত গুণনিয়ক কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
2x-6-7x-14ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
x-3ৰ প্ৰতিটো পদক x+2ৰ প্ৰতিটো পদেৰে পূৰণ কৰি বিভাজন ধৰ্মটো প্ৰয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
-x লাভ কৰিবলৈ 2x আৰু -3x একত্ৰ কৰক৷
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
সৰলীকৰণ৷
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
x^{2}-x^{1}-6 বাৰ -5x^{0} পুৰণ কৰক৷
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
-5x^{1}-20 বাৰ 2x^{1}-x^{0} পুৰণ কৰক৷
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
সৰলীকৰণ৷
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
একে পদসমূহ একলগ কৰক।
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
যিকোনো পদৰ বাবে t, t^{1}=t।
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
যিকোনো পদৰ বাবে t, t\times 1=t আৰু 1t=t।