মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{1}{3x^{2}}
এক্সপ্ৰেচন সৰলীকৰণ কৰিবলৈ এক্সপ'নেণ্টৰ নিয়মসমূহ ব্যৱহাৰ কৰক৷
\frac{1}{3}\times \frac{1}{x^{2}}
এটা পাৱাৰলৈ দুটা বা তাতোধিক সংখ্যাৰ গুণফল বৃদ্ধি কৰিবলৈ, প্ৰতিটো সংখ্যা পাৱাৰলৈ বৃদ্ধি কৰক আৰু ইয়াৰ গুণফলটো লওক৷
-\left(3x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2})
যদি F দুটা ডিফাৰেনচিয়েবল ফাংচন f\left(u\right) আৰু u=g\left(x\right) এটা সংযোজন হয়, যি F\left(x\right)=f\left(g\left(x\right)\right), তেতিয়া f-ৰ ডিৰাইব হেটিভ F হয়, যি u সৈতে সম্বন্ধিত হয়, g-ৰ ডিৰাইভেটিভ x-ৰ সৈতে সম্বন্ধিত হয়, যি \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)৷
-\left(3x^{2}\right)^{-2}\times 2\times 3x^{2-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
-6x^{1}\times \left(3x^{2}\right)^{-2}
সৰলীকৰণ৷
-6x\times \left(3x^{2}\right)^{-2}
যিকোনো পদৰ বাবে t, t^{1}=t।