মুখ্য সমললৈ এৰি যাওক
y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y^{2}-y=0
চলক y, -3ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ y+3-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
y\left(y-1\right)=0
yৰ গুণনীয়ক উলিয়াওক।
y=0 y=1
সমীকৰণ উলিয়াবলৈ, y=0 আৰু y-1=0 সমাধান কৰক।
y^{2}-y=0
চলক y, -3ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ y+3-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
y=\frac{-\left(-1\right)±\sqrt{1}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -1, c-ৰ বাবে 0 চাবষ্টিটিউট৷
y=\frac{-\left(-1\right)±1}{2}
1-ৰ বৰ্গমূল লওক৷
y=\frac{1±1}{2}
-1ৰ বিপৰীত হৈছে 1৷
y=\frac{2}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ y=\frac{1±1}{2} সমাধান কৰক৷ 1 লৈ 1 যোগ কৰক৷
y=1
2-ৰ দ্বাৰা 2 হৰণ কৰক৷
y=\frac{0}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ y=\frac{1±1}{2} সমাধান কৰক৷ 1-ৰ পৰা 1 বিয়োগ কৰক৷
y=0
2-ৰ দ্বাৰা 0 হৰণ কৰক৷
y=1 y=0
সমীকৰণটো এতিয়া সমাধান হৈছে৷
y^{2}-y=0
চলক y, -3ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ y+3-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1 হৰণ কৰক, -\frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
y^{2}-y+\frac{1}{4}=\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
উৎপাদক y^{2}-y+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
y-\frac{1}{2}=\frac{1}{2} y-\frac{1}{2}=-\frac{1}{2}
সৰলীকৰণ৷
y=1 y=0
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷