x-ৰ বাবে সমাধান কৰক
x=2\sqrt{10}\approx 6.32455532
x=-2\sqrt{10}\approx -6.32455532
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{1}{125}\times 25^{2}+x^{2}=45
45-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
\frac{1}{125}\times 625+x^{2}=45
2ৰ পাৱাৰ 25ক গণনা কৰক আৰু 625 লাভ কৰক৷
5+x^{2}=45
5 লাভ কৰিবৰ বাবে \frac{1}{125} আৰু 625 পুৰণ কৰক৷
x^{2}=45-5
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
x^{2}=40
40 লাভ কৰিবলৈ 45-ৰ পৰা 5 বিয়োগ কৰক৷
x=2\sqrt{10} x=-2\sqrt{10}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
\frac{1}{125}\times 25^{2}+x^{2}=45
45-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
\frac{1}{125}\times 625+x^{2}=45
2ৰ পাৱাৰ 25ক গণনা কৰক আৰু 625 লাভ কৰক৷
5+x^{2}=45
5 লাভ কৰিবৰ বাবে \frac{1}{125} আৰু 625 পুৰণ কৰক৷
5+x^{2}-45=0
দুয়োটা দিশৰ পৰা 45 বিয়োগ কৰক৷
-40+x^{2}=0
-40 লাভ কৰিবলৈ 5-ৰ পৰা 45 বিয়োগ কৰক৷
x^{2}-40=0
কুৱাড্ৰেটিক সমীকৰণ হৈছে ইয়াৰ দৰে, এটা x^{2} পদৰ সৈতে, কিন্তু কোনো x নাই, ইয়াক কুৱাড্ৰেয়িক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, এবাৰ সেইবিলাকক মান্য ৰূপ : ax^{2}+bx+c=0-ত প্ৰদান কৰি৷
x=\frac{0±\sqrt{0^{2}-4\left(-40\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 0, c-ৰ বাবে -40 চাবষ্টিটিউট৷
x=\frac{0±\sqrt{-4\left(-40\right)}}{2}
বৰ্গ 0৷
x=\frac{0±\sqrt{160}}{2}
-4 বাৰ -40 পুৰণ কৰক৷
x=\frac{0±4\sqrt{10}}{2}
160-ৰ বৰ্গমূল লওক৷
x=2\sqrt{10}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{0±4\sqrt{10}}{2} সমাধান কৰক৷
x=-2\sqrt{10}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{0±4\sqrt{10}}{2} সমাধান কৰক৷
x=2\sqrt{10} x=-2\sqrt{10}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}