x-ৰ বাবে সমাধান কৰক
x=-7
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\left(x+3\right)x+\left(x-2\right)\times 2=10
চলক x, -3,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-2\right)\left(x+3\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-2,x+3,x^{2}+x-6 ৰ সাধাৰণ বিভাজক৷
x^{2}+3x+\left(x-2\right)\times 2=10
x+3ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+3x+2x-4=10
x-2ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+5x-4=10
5x লাভ কৰিবলৈ 3x আৰু 2x একত্ৰ কৰক৷
x^{2}+5x-4-10=0
দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
x^{2}+5x-14=0
-14 লাভ কৰিবলৈ -4-ৰ পৰা 10 বিয়োগ কৰক৷
a+b=5 ab=-14
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}+5x-14ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,14 -2,7
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -14 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+14=13 -2+7=5
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=7
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 5।
\left(x-2\right)\left(x+7\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=2 x=-7
সমীকৰণ উলিয়াবলৈ, x-2=0 আৰু x+7=0 সমাধান কৰক।
x=-7
চলক x, 2ৰ সৈতে সমান হ’ব নোৱাৰে৷
\left(x+3\right)x+\left(x-2\right)\times 2=10
চলক x, -3,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-2\right)\left(x+3\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-2,x+3,x^{2}+x-6 ৰ সাধাৰণ বিভাজক৷
x^{2}+3x+\left(x-2\right)\times 2=10
x+3ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+3x+2x-4=10
x-2ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+5x-4=10
5x লাভ কৰিবলৈ 3x আৰু 2x একত্ৰ কৰক৷
x^{2}+5x-4-10=0
দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
x^{2}+5x-14=0
-14 লাভ কৰিবলৈ -4-ৰ পৰা 10 বিয়োগ কৰক৷
a+b=5 ab=1\left(-14\right)=-14
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-14 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,14 -2,7
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -14 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+14=13 -2+7=5
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=7
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 5।
\left(x^{2}-2x\right)+\left(7x-14\right)
x^{2}+5x-14ক \left(x^{2}-2x\right)+\left(7x-14\right) হিচাপে পুনৰ লিখক।
x\left(x-2\right)+7\left(x-2\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 7ৰ গুণনীয়ক উলিয়াওক।
\left(x-2\right)\left(x+7\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-2ৰ গুণনীয়ক উলিয়াওক।
x=2 x=-7
সমীকৰণ উলিয়াবলৈ, x-2=0 আৰু x+7=0 সমাধান কৰক।
x=-7
চলক x, 2ৰ সৈতে সমান হ’ব নোৱাৰে৷
\left(x+3\right)x+\left(x-2\right)\times 2=10
চলক x, -3,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-2\right)\left(x+3\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-2,x+3,x^{2}+x-6 ৰ সাধাৰণ বিভাজক৷
x^{2}+3x+\left(x-2\right)\times 2=10
x+3ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+3x+2x-4=10
x-2ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+5x-4=10
5x লাভ কৰিবলৈ 3x আৰু 2x একত্ৰ কৰক৷
x^{2}+5x-4-10=0
দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
x^{2}+5x-14=0
-14 লাভ কৰিবলৈ -4-ৰ পৰা 10 বিয়োগ কৰক৷
x=\frac{-5±\sqrt{5^{2}-4\left(-14\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 5, c-ৰ বাবে -14 চাবষ্টিটিউট৷
x=\frac{-5±\sqrt{25-4\left(-14\right)}}{2}
বৰ্গ 5৷
x=\frac{-5±\sqrt{25+56}}{2}
-4 বাৰ -14 পুৰণ কৰক৷
x=\frac{-5±\sqrt{81}}{2}
56 লৈ 25 যোগ কৰক৷
x=\frac{-5±9}{2}
81-ৰ বৰ্গমূল লওক৷
x=\frac{4}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-5±9}{2} সমাধান কৰক৷ 9 লৈ -5 যোগ কৰক৷
x=2
2-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=-\frac{14}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-5±9}{2} সমাধান কৰক৷ -5-ৰ পৰা 9 বিয়োগ কৰক৷
x=-7
2-ৰ দ্বাৰা -14 হৰণ কৰক৷
x=2 x=-7
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x=-7
চলক x, 2ৰ সৈতে সমান হ’ব নোৱাৰে৷
\left(x+3\right)x+\left(x-2\right)\times 2=10
চলক x, -3,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-2\right)\left(x+3\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-2,x+3,x^{2}+x-6 ৰ সাধাৰণ বিভাজক৷
x^{2}+3x+\left(x-2\right)\times 2=10
x+3ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+3x+2x-4=10
x-2ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+5x-4=10
5x লাভ কৰিবলৈ 3x আৰু 2x একত্ৰ কৰক৷
x^{2}+5x=10+4
উভয় কাষে 4 যোগ কৰক।
x^{2}+5x=14
14 লাভ কৰিবৰ বাবে 10 আৰু 4 যোগ কৰক৷
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=14+\left(\frac{5}{2}\right)^{2}
5 হৰণ কৰক, \frac{5}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{5}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+5x+\frac{25}{4}=14+\frac{25}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{5}{2} বৰ্গ কৰক৷
x^{2}+5x+\frac{25}{4}=\frac{81}{4}
\frac{25}{4} লৈ 14 যোগ কৰক৷
\left(x+\frac{5}{2}\right)^{2}=\frac{81}{4}
উৎপাদক x^{2}+5x+\frac{25}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{5}{2}=\frac{9}{2} x+\frac{5}{2}=-\frac{9}{2}
সৰলীকৰণ৷
x=2 x=-7
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{5}{2} বিয়োগ কৰক৷
x=-7
চলক x, 2ৰ সৈতে সমান হ’ব নোৱাৰে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}