মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\left(x-2\right)x=\left(x+2\right)\times 3
চলক x, -2,2,3ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-3\right)\left(x-2\right)\left(x+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x^{2}-x-6,x^{2}-5x+6 ৰ সাধাৰণ বিভাজক৷
x^{2}-2x=\left(x+2\right)\times 3
x-2ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}-2x=3x+6
x+2ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}-2x-3x=6
দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
x^{2}-5x=6
-5x লাভ কৰিবলৈ -2x আৰু -3x একত্ৰ কৰক৷
x^{2}-5x-6=0
দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
a+b=-5 ab=-6
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-5x-6ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-6 2,-3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-6=-5 2-3=-1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-6 b=1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(x-6\right)\left(x+1\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=6 x=-1
সমীকৰণ উলিয়াবলৈ, x-6=0 আৰু x+1=0 সমাধান কৰক।
\left(x-2\right)x=\left(x+2\right)\times 3
চলক x, -2,2,3ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-3\right)\left(x-2\right)\left(x+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x^{2}-x-6,x^{2}-5x+6 ৰ সাধাৰণ বিভাজক৷
x^{2}-2x=\left(x+2\right)\times 3
x-2ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}-2x=3x+6
x+2ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}-2x-3x=6
দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
x^{2}-5x=6
-5x লাভ কৰিবলৈ -2x আৰু -3x একত্ৰ কৰক৷
x^{2}-5x-6=0
দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
a+b=-5 ab=1\left(-6\right)=-6
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-6 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-6 2,-3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-6=-5 2-3=-1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-6 b=1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(x^{2}-6x\right)+\left(x-6\right)
x^{2}-5x-6ক \left(x^{2}-6x\right)+\left(x-6\right) হিচাপে পুনৰ লিখক।
x\left(x-6\right)+x-6
x^{2}-6xত xৰ গুণনীয়ক উলিয়াওক।
\left(x-6\right)\left(x+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-6ৰ গুণনীয়ক উলিয়াওক।
x=6 x=-1
সমীকৰণ উলিয়াবলৈ, x-6=0 আৰু x+1=0 সমাধান কৰক।
\left(x-2\right)x=\left(x+2\right)\times 3
চলক x, -2,2,3ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-3\right)\left(x-2\right)\left(x+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x^{2}-x-6,x^{2}-5x+6 ৰ সাধাৰণ বিভাজক৷
x^{2}-2x=\left(x+2\right)\times 3
x-2ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}-2x=3x+6
x+2ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}-2x-3x=6
দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
x^{2}-5x=6
-5x লাভ কৰিবলৈ -2x আৰু -3x একত্ৰ কৰক৷
x^{2}-5x-6=0
দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-6\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -5, c-ৰ বাবে -6 চাবষ্টিটিউট৷
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-6\right)}}{2}
বৰ্গ -5৷
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2}
-4 বাৰ -6 পুৰণ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{49}}{2}
24 লৈ 25 যোগ কৰক৷
x=\frac{-\left(-5\right)±7}{2}
49-ৰ বৰ্গমূল লওক৷
x=\frac{5±7}{2}
-5ৰ বিপৰীত হৈছে 5৷
x=\frac{12}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{5±7}{2} সমাধান কৰক৷ 7 লৈ 5 যোগ কৰক৷
x=6
2-ৰ দ্বাৰা 12 হৰণ কৰক৷
x=-\frac{2}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{5±7}{2} সমাধান কৰক৷ 5-ৰ পৰা 7 বিয়োগ কৰক৷
x=-1
2-ৰ দ্বাৰা -2 হৰণ কৰক৷
x=6 x=-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
\left(x-2\right)x=\left(x+2\right)\times 3
চলক x, -2,2,3ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-3\right)\left(x-2\right)\left(x+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x^{2}-x-6,x^{2}-5x+6 ৰ সাধাৰণ বিভাজক৷
x^{2}-2x=\left(x+2\right)\times 3
x-2ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}-2x=3x+6
x+2ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}-2x-3x=6
দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
x^{2}-5x=6
-5x লাভ কৰিবলৈ -2x আৰু -3x একত্ৰ কৰক৷
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
-5 হৰণ কৰক, -\frac{5}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{5}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{5}{2} বৰ্গ কৰক৷
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
\frac{25}{4} লৈ 6 যোগ কৰক৷
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
উৎপাদক x^{2}-5x+\frac{25}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
সৰলীকৰণ৷
x=6 x=-1
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{2} যোগ কৰক৷