মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}-5x+4=0
চলক x, -1ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x+1\right)^{2}-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
a+b=-5 ab=4
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-5x+4ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-4 -2,-2
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 4 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-4=-5 -2-2=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=-1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(x-4\right)\left(x-1\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=4 x=1
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু x-1=0 সমাধান কৰক।
x^{2}-5x+4=0
চলক x, -1ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x+1\right)^{2}-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
a+b=-5 ab=1\times 4=4
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+4 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-4 -2,-2
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 4 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-4=-5 -2-2=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=-1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(x^{2}-4x\right)+\left(-x+4\right)
x^{2}-5x+4ক \left(x^{2}-4x\right)+\left(-x+4\right) হিচাপে পুনৰ লিখক।
x\left(x-4\right)-\left(x-4\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(x-4\right)\left(x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-4ৰ গুণনীয়ক উলিয়াওক।
x=4 x=1
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু x-1=0 সমাধান কৰক।
x^{2}-5x+4=0
চলক x, -1ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x+1\right)^{2}-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -5, c-ৰ বাবে 4 চাবষ্টিটিউট৷
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
বৰ্গ -5৷
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
-4 বাৰ 4 পুৰণ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
-16 লৈ 25 যোগ কৰক৷
x=\frac{-\left(-5\right)±3}{2}
9-ৰ বৰ্গমূল লওক৷
x=\frac{5±3}{2}
-5ৰ বিপৰীত হৈছে 5৷
x=\frac{8}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{5±3}{2} সমাধান কৰক৷ 3 লৈ 5 যোগ কৰক৷
x=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
x=\frac{2}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{5±3}{2} সমাধান কৰক৷ 5-ৰ পৰা 3 বিয়োগ কৰক৷
x=1
2-ৰ দ্বাৰা 2 হৰণ কৰক৷
x=4 x=1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-5x+4=0
চলক x, -1ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x+1\right)^{2}-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
x^{2}-5x=-4
দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
-5 হৰণ কৰক, -\frac{5}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{5}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{5}{2} বৰ্গ কৰক৷
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
\frac{25}{4} লৈ -4 যোগ কৰক৷
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
উৎপাদক x^{2}-5x+\frac{25}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
সৰলীকৰণ৷
x=4 x=1
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{2} যোগ কৰক৷