মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
বিস্তাৰ
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{x^{2}+1}{x^{2}-1}+\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}
নিউমাৰেটৰ সময়ক নিউমাৰেটৰৰে আৰু ডেনোমিনেটৰ সময়ক ডেনোমিনেটেৰে পূৰণ কৰি \frac{x+2}{x-2} বাৰ \frac{x-1}{x+1} পূৰণ কৰক৷
\frac{x^{2}+1}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}
উৎপাদক x^{2}-1৷
\frac{\left(x^{2}+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ \left(x-1\right)\left(x+1\right) আৰু \left(x-2\right)\left(x+1\right)ৰ সাধাৰণ গুণফল হৈছে \left(x-2\right)\left(x-1\right)\left(x+1\right)৷ \frac{x^{2}+1}{\left(x-1\right)\left(x+1\right)} বাৰ \frac{x-2}{x-2} পুৰণ কৰক৷ \frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)} বাৰ \frac{x-1}{x-1} পুৰণ কৰক৷
\frac{\left(x^{2}+1\right)\left(x-2\right)+\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
যিহেতু \frac{\left(x^{2}+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)} আৰু \frac{\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{x^{3}-2x^{2}+x-2+x^{3}-2x^{2}+x+2x^{2}-4x+2}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
\left(x^{2}+1\right)\left(x-2\right)+\left(x+2\right)\left(x-1\right)\left(x-1\right)ত গুণনিয়ক কৰক৷
\frac{2x^{3}-2x^{2}-2x}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
x^{3}-2x^{2}+x-2+x^{3}-2x^{2}+x+2x^{2}-4x+2ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{2x^{3}-2x^{2}-2x}{x^{3}-2x^{2}-x+2}
\left(x-2\right)\left(x-1\right)\left(x+1\right) বিস্তাৰ কৰক৷
\frac{x^{2}+1}{x^{2}-1}+\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}
নিউমাৰেটৰ সময়ক নিউমাৰেটৰৰে আৰু ডেনোমিনেটৰ সময়ক ডেনোমিনেটেৰে পূৰণ কৰি \frac{x+2}{x-2} বাৰ \frac{x-1}{x+1} পূৰণ কৰক৷
\frac{x^{2}+1}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}
উৎপাদক x^{2}-1৷
\frac{\left(x^{2}+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ \left(x-1\right)\left(x+1\right) আৰু \left(x-2\right)\left(x+1\right)ৰ সাধাৰণ গুণফল হৈছে \left(x-2\right)\left(x-1\right)\left(x+1\right)৷ \frac{x^{2}+1}{\left(x-1\right)\left(x+1\right)} বাৰ \frac{x-2}{x-2} পুৰণ কৰক৷ \frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)} বাৰ \frac{x-1}{x-1} পুৰণ কৰক৷
\frac{\left(x^{2}+1\right)\left(x-2\right)+\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
যিহেতু \frac{\left(x^{2}+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)} আৰু \frac{\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{x^{3}-2x^{2}+x-2+x^{3}-2x^{2}+x+2x^{2}-4x+2}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
\left(x^{2}+1\right)\left(x-2\right)+\left(x+2\right)\left(x-1\right)\left(x-1\right)ত গুণনিয়ক কৰক৷
\frac{2x^{3}-2x^{2}-2x}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
x^{3}-2x^{2}+x-2+x^{3}-2x^{2}+x+2x^{2}-4x+2ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{2x^{3}-2x^{2}-2x}{x^{3}-2x^{2}-x+2}
\left(x-2\right)\left(x-1\right)\left(x+1\right) বিস্তাৰ কৰক৷