x-ৰ বাবে সমাধান কৰক
x=-1
x=1
x=2
x=-2
গ্ৰাফ
কুইজ
Quadratic Equation
\frac { x ^ { 2 } + 1 } { 4 } + \frac { 1 } { x ^ { 2 } } = \frac { 3 } { 2 }
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x^{2}\left(x^{2}+1\right)+4=6x^{2}
চলক x, 0ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 4x^{2}ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 4,x^{2},2 ৰ সাধাৰণ বিভাজক৷
x^{4}+x^{2}+4=6x^{2}
x^{2}ক x^{2}+1ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{4}+x^{2}+4-6x^{2}=0
দুয়োটা দিশৰ পৰা 6x^{2} বিয়োগ কৰক৷
x^{4}-5x^{2}+4=0
-5x^{2} লাভ কৰিবলৈ x^{2} আৰু -6x^{2} একত্ৰ কৰক৷
t^{2}-5t+4=0
x^{2} বাবে t বিকল্প।
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 4}}{2}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 1ৰ বিকল্প দিয়ক, bৰ বাবে -5, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে 4।
t=\frac{5±3}{2}
গণনা কৰক৷
t=4 t=1
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া t=\frac{5±3}{2} সমীকৰণটো সমাধান কৰক।
x=2 x=-2 x=1 x=-1
x=t^{2}ৰ পৰা, প্ৰত্যেক tৰ বাবে x=±\sqrt{t} মূল্যায়ন কৰি সমাধানসমূহ আহৰণ কৰা হয়।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}