মূল্যায়ন
\sqrt[15]{u}
ডিফাৰেনচিয়েট w.r.t. u
\frac{1}{15u^{\frac{14}{15}}}
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{u^{\frac{2}{3}}}{u^{\frac{3}{5}}}
এক্সপ্ৰেচন সৰলীকৰণ কৰিবলৈ এক্সপ'নেণ্টৰ নিয়মসমূহ ব্যৱহাৰ কৰক৷
u^{\frac{2}{3}-\frac{3}{5}}
একেটা বেছৰ পাৱাৰ ভাগ কৰিবৰ বাবে, ডিনোমিনেটৰৰ প্ৰতিপাদকক নিউমাৰেটৰৰ প্ৰতিপাদকৰ পৰা বিয়োগ কৰক৷
\sqrt[15]{u}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি \frac{2}{3}-ৰ পৰা \frac{3}{5} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{1}{1}u^{\frac{2}{3}-\frac{3}{5}})
একেটা বেছৰ পাৱাৰ ভাগ কৰিবৰ বাবে, ডিনোমিনেটৰৰ প্ৰতিপাদকক নিউমাৰেটৰৰ প্ৰতিপাদকৰ পৰা বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}u}(\sqrt[15]{u})
গণনা কৰক৷
\frac{1}{15}u^{\frac{1}{15}-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{1}{15}u^{-\frac{14}{15}}
গণনা কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}