মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. a
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{a}{a\left(a-1\right)}
ইতিমধ্যে উপাদান নোহোৱা ৰাশিবোৰক উপাদান কৰক৷
\frac{1}{a-1}
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে a সমান কৰক৷
\frac{\left(a^{2}-a^{1}\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{1})-a^{1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-a^{1})}{\left(a^{2}-a^{1}\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(a^{2}-a^{1}\right)a^{1-1}-a^{1}\left(2a^{2-1}-a^{1-1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(a^{2}-a^{1}\right)a^{0}-a^{1}\left(2a^{1}-a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
সৰলীকৰণ৷
\frac{a^{2}a^{0}-a^{1}a^{0}-a^{1}\left(2a^{1}-a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
a^{2}-a^{1} বাৰ a^{0} পুৰণ কৰক৷
\frac{a^{2}a^{0}-a^{1}a^{0}-\left(a^{1}\times 2a^{1}+a^{1}\left(-1\right)a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
a^{1} বাৰ 2a^{1}-a^{0} পুৰণ কৰক৷
\frac{a^{2}-a^{1}-\left(2a^{1+1}-a^{1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{a^{2}-a^{1}-\left(2a^{2}-a^{1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
সৰলীকৰণ৷
\frac{-a^{2}}{\left(a^{2}-a^{1}\right)^{2}}
একে পদসমূহ একলগ কৰক।
\frac{-a^{2}}{\left(a^{2}-a\right)^{2}}
যিকোনো পদৰ বাবে t, t^{1}=t।