কাৰক
\frac{\left(12a-55b\right)\left(12a+55b\right)}{17424}
মূল্যায়ন
\frac{a^{2}}{121}-\frac{25b^{2}}{144}
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{144a^{2}-3025b^{2}}{17424}
\frac{1}{17424}ৰ গুণনীয়ক উলিয়াওক।
\left(12a-55b\right)\left(12a+55b\right)
144a^{2}-3025b^{2} বিবেচনা কৰক। 144a^{2}-3025b^{2}ক \left(12a\right)^{2}-\left(55b\right)^{2} হিচাপে পুনৰ লিখক। ৰুল ব্যৱহাৰ কৰি বৰ্গৰ ভিন্নতাক উৎপাদক বনাব পাৰি: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right)৷
\frac{\left(12a-55b\right)\left(12a+55b\right)}{17424}
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
\frac{144a^{2}}{17424}-\frac{121\times 25b^{2}}{17424}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 121 আৰু 144ৰ সাধাৰণ গুণফল হৈছে 17424৷ \frac{a^{2}}{121} বাৰ \frac{144}{144} পুৰণ কৰক৷ \frac{25b^{2}}{144} বাৰ \frac{121}{121} পুৰণ কৰক৷
\frac{144a^{2}-121\times 25b^{2}}{17424}
যিহেতু \frac{144a^{2}}{17424} আৰু \frac{121\times 25b^{2}}{17424}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{144a^{2}-3025b^{2}}{17424}
144a^{2}-121\times 25b^{2}ত গুণনিয়ক কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}