মূল্যায়ন
\frac{36}{41}+\frac{4}{41}i\approx 0.87804878+0.097560976i
প্ৰকৃত অংশ
\frac{36}{41} = 0.8780487804878049
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{8\left(9+i\right)}{\left(9-i\right)\left(9+i\right)}
ডিনোমিনেটৰৰ কমপ্লেক্স কনজুগেটৰ দ্বাৰা দুয়োটা নিউমেৰেটৰ আৰু ডিনোমিনেটৰ পুৰণ কৰক, 9+i৷
\frac{8\left(9+i\right)}{9^{2}-i^{2}}
\left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷
\frac{8\left(9+i\right)}{82}
সংজ্ঞা অনুযায়ী, i^{2} is -1৷ হৰ গণনা কৰক৷
\frac{8\times 9+8i}{82}
8 বাৰ 9+i পুৰণ কৰক৷
\frac{72+8i}{82}
8\times 9+8iত গুণনিয়ক কৰক৷
\frac{36}{41}+\frac{4}{41}i
\frac{36}{41}+\frac{4}{41}i লাভ কৰিবলৈ 82ৰ দ্বাৰা 72+8i হৰণ কৰক৷
Re(\frac{8\left(9+i\right)}{\left(9-i\right)\left(9+i\right)})
হৰ 9+iৰ জটিল অনুবন্ধীৰ দ্বাৰা \frac{8}{9-i}ৰ লব আৰু হৰ দুয়োটা পূৰণ কৰক৷
Re(\frac{8\left(9+i\right)}{9^{2}-i^{2}})
\left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷
Re(\frac{8\left(9+i\right)}{82})
সংজ্ঞা অনুযায়ী, i^{2} is -1৷ হৰ গণনা কৰক৷
Re(\frac{8\times 9+8i}{82})
8 বাৰ 9+i পুৰণ কৰক৷
Re(\frac{72+8i}{82})
8\times 9+8iত গুণনিয়ক কৰক৷
Re(\frac{36}{41}+\frac{4}{41}i)
\frac{36}{41}+\frac{4}{41}i লাভ কৰিবলৈ 82ৰ দ্বাৰা 72+8i হৰণ কৰক৷
\frac{36}{41}
\frac{36}{41}+\frac{4}{41}iৰ প্ৰকৃত অংশটো হৈছে \frac{36}{41}৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}