মূল্যায়ন
\frac{\left(a-2\right)^{2}}{4}
বিস্তাৰ
\frac{a^{2}}{4}-a+1
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}a\right)^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
\left(\frac{1}{2}a+\frac{1}{3}\right)\left(\frac{1}{2}a-\frac{1}{3}\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ \frac{1}{3}৷
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}\right)^{2}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
\left(\frac{1}{2}a\right)^{2} বিস্তাৰ কৰক৷
\frac{7}{64}a^{2}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
2ৰ পাৱাৰ \frac{1}{2}ক গণনা কৰক আৰু \frac{1}{4} লাভ কৰক৷
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
বৰ্গ \frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}৷
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}aৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} লাভ কৰিবলৈ \frac{1}{4}a^{2} আৰু -2a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{7}{2}a^{2}ক -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}aৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}aৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} লাভ কৰিবলৈ \frac{1}{4}a^{2} আৰু -2a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\frac{49}{16}a^{4}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
বৰ্গ -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a৷
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{49}{16}a^{4} লাভ কৰিবলৈ -\frac{49}{8}a^{4} আৰু \frac{49}{16}a^{4} একত্ৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
0 লাভ কৰিবলৈ \frac{21}{16}a^{3} আৰু -\frac{21}{16}a^{3} একত্ৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{9}{64}a^{2} লাভ কৰিবলৈ -\frac{7}{18}a^{2} আৰু \frac{305}{576}a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
0 লাভ কৰিবলৈ -\frac{49}{16}a^{4} আৰু \frac{49}{16}a^{4} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}aৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} লাভ কৰিবলৈ \frac{1}{4}a^{2} আৰু -2a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{28}{9}a^{2}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{16}{9}ক -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}aৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{1873}{576}a^{2} লাভ কৰিবলৈ \frac{9}{64}a^{2} আৰু \frac{28}{9}a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{17}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{17}{81} লাভ কৰিবৰ বাবে \frac{1}{81} আৰু \frac{16}{81} যোগ কৰক৷
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{3}{4}a+\frac{17}{81}-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{3}{4}a লাভ কৰিবলৈ -\frac{1}{12}a আৰু -\frac{2}{3}a একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+\frac{17}{81}+\frac{64}{81}-\frac{1}{4}a
\frac{9}{64}a^{2} লাভ কৰিবলৈ \frac{1873}{576}a^{2} আৰু -\frac{28}{9}a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
1 লাভ কৰিবৰ বাবে \frac{17}{81} আৰু \frac{64}{81} যোগ কৰক৷
\frac{1}{4}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
\frac{1}{4}a^{2} লাভ কৰিবলৈ \frac{7}{64}a^{2} আৰু \frac{9}{64}a^{2} একত্ৰ কৰক৷
\frac{1}{4}a^{2}-a+1
-a লাভ কৰিবলৈ -\frac{3}{4}a আৰু -\frac{1}{4}a একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}a\right)^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
\left(\frac{1}{2}a+\frac{1}{3}\right)\left(\frac{1}{2}a-\frac{1}{3}\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ \frac{1}{3}৷
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}\right)^{2}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
\left(\frac{1}{2}a\right)^{2} বিস্তাৰ কৰক৷
\frac{7}{64}a^{2}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
2ৰ পাৱাৰ \frac{1}{2}ক গণনা কৰক আৰু \frac{1}{4} লাভ কৰক৷
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
বৰ্গ \frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}৷
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}aৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} লাভ কৰিবলৈ \frac{1}{4}a^{2} আৰু -2a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{7}{2}a^{2}ক -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}aৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}aৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} লাভ কৰিবলৈ \frac{1}{4}a^{2} আৰু -2a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\frac{49}{16}a^{4}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
বৰ্গ -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a৷
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{49}{16}a^{4} লাভ কৰিবলৈ -\frac{49}{8}a^{4} আৰু \frac{49}{16}a^{4} একত্ৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
0 লাভ কৰিবলৈ \frac{21}{16}a^{3} আৰু -\frac{21}{16}a^{3} একত্ৰ কৰক৷
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{9}{64}a^{2} লাভ কৰিবলৈ -\frac{7}{18}a^{2} আৰু \frac{305}{576}a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
0 লাভ কৰিবলৈ -\frac{49}{16}a^{4} আৰু \frac{49}{16}a^{4} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}aৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} লাভ কৰিবলৈ \frac{1}{4}a^{2} আৰু -2a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{28}{9}a^{2}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{16}{9}ক -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}aৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{1873}{576}a^{2} লাভ কৰিবলৈ \frac{9}{64}a^{2} আৰু \frac{28}{9}a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{17}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{17}{81} লাভ কৰিবৰ বাবে \frac{1}{81} আৰু \frac{16}{81} যোগ কৰক৷
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{3}{4}a+\frac{17}{81}-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{3}{4}a লাভ কৰিবলৈ -\frac{1}{12}a আৰু -\frac{2}{3}a একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+\frac{17}{81}+\frac{64}{81}-\frac{1}{4}a
\frac{9}{64}a^{2} লাভ কৰিবলৈ \frac{1873}{576}a^{2} আৰু -\frac{28}{9}a^{2} একত্ৰ কৰক৷
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
1 লাভ কৰিবৰ বাবে \frac{17}{81} আৰু \frac{64}{81} যোগ কৰক৷
\frac{1}{4}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
\frac{1}{4}a^{2} লাভ কৰিবলৈ \frac{7}{64}a^{2} আৰু \frac{9}{64}a^{2} একত্ৰ কৰক৷
\frac{1}{4}a^{2}-a+1
-a লাভ কৰিবলৈ -\frac{3}{4}a আৰু -\frac{1}{4}a একত্ৰ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}