মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{5\times 4x}{4x\left(x-1\right)}-\frac{4\left(x-1\right)}{4x\left(x-1\right)}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ x-1 আৰু 4xৰ সাধাৰণ গুণফল হৈছে 4x\left(x-1\right)৷ \frac{5}{x-1} বাৰ \frac{4x}{4x} পুৰণ কৰক৷ \frac{4}{4x} বাৰ \frac{x-1}{x-1} পুৰণ কৰক৷
\frac{5\times 4x-4\left(x-1\right)}{4x\left(x-1\right)}
যিহেতু \frac{5\times 4x}{4x\left(x-1\right)} আৰু \frac{4\left(x-1\right)}{4x\left(x-1\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{20x-4x+4}{4x\left(x-1\right)}
5\times 4x-4\left(x-1\right)ত গুণনিয়ক কৰক৷
\frac{16x+4}{4x\left(x-1\right)}
20x-4x+4ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{4\left(4x+1\right)}{4x\left(x-1\right)}
\frac{16x+4}{4x\left(x-1\right)}ত ইতিমধ্যে উপাদান নোহোৱা ৰাশিবোৰক উপাদান কৰক৷
\frac{4x+1}{x\left(x-1\right)}
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে 4 সমান কৰক৷
\frac{4x+1}{x^{2}-x}
x\left(x-1\right) বিস্তাৰ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 4x}{4x\left(x-1\right)}-\frac{4\left(x-1\right)}{4x\left(x-1\right)})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ x-1 আৰু 4xৰ সাধাৰণ গুণফল হৈছে 4x\left(x-1\right)৷ \frac{5}{x-1} বাৰ \frac{4x}{4x} পুৰণ কৰক৷ \frac{4}{4x} বাৰ \frac{x-1}{x-1} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 4x-4\left(x-1\right)}{4x\left(x-1\right)})
যিহেতু \frac{5\times 4x}{4x\left(x-1\right)} আৰু \frac{4\left(x-1\right)}{4x\left(x-1\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{20x-4x+4}{4x\left(x-1\right)})
5\times 4x-4\left(x-1\right)ত গুণনিয়ক কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{16x+4}{4x\left(x-1\right)})
20x-4x+4ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(4x+1\right)}{4x\left(x-1\right)})
\frac{16x+4}{4x\left(x-1\right)}ত ইতিমধ্যে উপাদান নোহোৱা ৰাশিবোৰক উপাদান কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+1}{x\left(x-1\right)})
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে 4 সমান কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+1}{x^{2}-x})
xক x-1ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{\left(x^{2}-x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(4x^{1}+1)-\left(4x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1})}{\left(x^{2}-x^{1}\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(x^{2}-x^{1}\right)\times 4x^{1-1}-\left(4x^{1}+1\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(x^{2}-x^{1}\right)\times 4x^{0}-\left(4x^{1}+1\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
সৰলীকৰণ৷
\frac{x^{2}\times 4x^{0}-x^{1}\times 4x^{0}-\left(4x^{1}+1\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
x^{2}-x^{1} বাৰ 4x^{0} পুৰণ কৰক৷
\frac{x^{2}\times 4x^{0}-x^{1}\times 4x^{0}-\left(4x^{1}\times 2x^{1}+4x^{1}\left(-1\right)x^{0}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
4x^{1}+1 বাৰ 2x^{1}-x^{0} পুৰণ কৰক৷
\frac{4x^{2}-4x^{1}-\left(4\times 2x^{1+1}+4\left(-1\right)x^{1}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{4x^{2}-4x^{1}-\left(8x^{2}-4x^{1}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
সৰলীকৰণ৷
\frac{-4x^{2}-2x^{1}+x^{0}}{\left(x^{2}-x^{1}\right)^{2}}
একে পদসমূহ একলগ কৰক।
\frac{-4x^{2}-2x+x^{0}}{\left(x^{2}-x\right)^{2}}
যিকোনো পদৰ বাবে t, t^{1}=t।
\frac{-4x^{2}-2x+1}{\left(x^{2}-x\right)^{2}}
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।