মূল্যায়ন
\frac{10x^{2}}{3}
ডিফাৰেনচিয়েট w.r.t. x
\frac{20x}{3}
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\left(40x^{4}\right)^{1}\times \frac{1}{12x^{2}}
এক্সপ্ৰেচন সৰলীকৰণ কৰিবলৈ এক্সপ'নেণ্টৰ নিয়মসমূহ ব্যৱহাৰ কৰক৷
40^{1}\left(x^{4}\right)^{1}\times \frac{1}{12}\times \frac{1}{x^{2}}
এটা পাৱাৰলৈ দুটা বা তাতোধিক সংখ্যাৰ গুণফল বৃদ্ধি কৰিবলৈ, প্ৰতিটো সংখ্যা পাৱাৰলৈ বৃদ্ধি কৰক আৰু ইয়াৰ গুণফলটো লওক৷
40^{1}\times \frac{1}{12}\left(x^{4}\right)^{1}\times \frac{1}{x^{2}}
গুণিতকৰ ক্ৰমবিনিময় বৈশিষ্ট ব্যৱহাৰ কৰক৷
40^{1}\times \frac{1}{12}x^{4}x^{2\left(-1\right)}
এটা পাৱাৰ আন এটা পাৱাৰত বঢ়াবলৈ, ঘাতসমূহ পূৰণ কৰক।
40^{1}\times \frac{1}{12}x^{4}x^{-2}
2 বাৰ -1 পুৰণ কৰক৷
40^{1}\times \frac{1}{12}x^{4-2}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
40^{1}\times \frac{1}{12}x^{2}
প্ৰতিপাদকসমূহ 4 আৰু -2 যোগ কৰক৷
40\times \frac{1}{12}x^{2}
পাৱাৰ 1-লৈ 40 বৃদ্ধি কৰক৷
\frac{10}{3}x^{2}
40 বাৰ \frac{1}{12} পুৰণ কৰক৷
\frac{40^{1}x^{4}}{12^{1}x^{2}}
এক্সপ্ৰেচন সৰলীকৰণ কৰিবলৈ এক্সপ'নেণ্টৰ নিয়মসমূহ ব্যৱহাৰ কৰক৷
\frac{40^{1}x^{4-2}}{12^{1}}
একেটা বেছৰ পাৱাৰ ভাগ কৰিবৰ বাবে, ডিনোমিনেটৰৰ প্ৰতিপাদকক নিউমাৰেটৰৰ প্ৰতিপাদকৰ পৰা বিয়োগ কৰক৷
\frac{40^{1}x^{2}}{12^{1}}
4-ৰ পৰা 2 বিয়োগ কৰক৷
\frac{10}{3}x^{2}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{40}{12} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{40}{12}x^{4-2})
একেটা বেছৰ পাৱাৰ ভাগ কৰিবৰ বাবে, ডিনোমিনেটৰৰ প্ৰতিপাদকক নিউমাৰেটৰৰ প্ৰতিপাদকৰ পৰা বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10}{3}x^{2})
গণনা কৰক৷
2\times \frac{10}{3}x^{2-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{20}{3}x^{1}
গণনা কৰক৷
\frac{20}{3}x
যিকোনো পদৰ বাবে t, t^{1}=t।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}