মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
প্ৰকৃত অংশ
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{4i\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)}
ডিনোমিনেটৰৰ কমপ্লেক্স কনজুগেটৰ দ্বাৰা দুয়োটা নিউমেৰেটৰ আৰু ডিনোমিনেটৰ পুৰণ কৰক, -1-4i৷
\frac{4i\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}}
\left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷
\frac{4i\left(-1-4i\right)}{17}
সংজ্ঞা অনুযায়ী, i^{2} is -1৷ হৰ গণনা কৰক৷
\frac{4i\left(-1\right)+4\left(-4\right)i^{2}}{17}
4i বাৰ -1-4i পুৰণ কৰক৷
\frac{4i\left(-1\right)+4\left(-4\right)\left(-1\right)}{17}
সংজ্ঞা অনুযায়ী, i^{2} is -1৷
\frac{16-4i}{17}
4i\left(-1\right)+4\left(-4\right)\left(-1\right)ত গুণনিয়ক কৰক৷ পদসমূহ ৰেকৰ্ড কৰক৷
\frac{16}{17}-\frac{4}{17}i
\frac{16}{17}-\frac{4}{17}i লাভ কৰিবলৈ 17ৰ দ্বাৰা 16-4i হৰণ কৰক৷
Re(\frac{4i\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)})
হৰ -1-4iৰ জটিল অনুবন্ধীৰ দ্বাৰা \frac{4i}{-1+4i}ৰ লব আৰু হৰ দুয়োটা পূৰণ কৰক৷
Re(\frac{4i\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}})
\left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷
Re(\frac{4i\left(-1-4i\right)}{17})
সংজ্ঞা অনুযায়ী, i^{2} is -1৷ হৰ গণনা কৰক৷
Re(\frac{4i\left(-1\right)+4\left(-4\right)i^{2}}{17})
4i বাৰ -1-4i পুৰণ কৰক৷
Re(\frac{4i\left(-1\right)+4\left(-4\right)\left(-1\right)}{17})
সংজ্ঞা অনুযায়ী, i^{2} is -1৷
Re(\frac{16-4i}{17})
4i\left(-1\right)+4\left(-4\right)\left(-1\right)ত গুণনিয়ক কৰক৷ পদসমূহ ৰেকৰ্ড কৰক৷
Re(\frac{16}{17}-\frac{4}{17}i)
\frac{16}{17}-\frac{4}{17}i লাভ কৰিবলৈ 17ৰ দ্বাৰা 16-4i হৰণ কৰক৷
\frac{16}{17}
\frac{16}{17}-\frac{4}{17}iৰ প্ৰকৃত অংশটো হৈছে \frac{16}{17}৷