মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
চলক x, -1,1ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 2\left(x-1\right)\left(x+1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 2x-2,x+1,x-1 ৰ সাধাৰণ বিভাজক৷
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
x+1ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3+6x-6=\left(2x+2\right)x
2x-2ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
9x+3-6=\left(2x+2\right)x
9x লাভ কৰিবলৈ 3x আৰু 6x একত্ৰ কৰক৷
9x-3=\left(2x+2\right)x
-3 লাভ কৰিবলৈ 3-ৰ পৰা 6 বিয়োগ কৰক৷
9x-3=2x^{2}+2x
2x+2ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
9x-3-2x^{2}=2x
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
9x-3-2x^{2}-2x=0
দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
7x-3-2x^{2}=0
7x লাভ কৰিবলৈ 9x আৰু -2x একত্ৰ কৰক৷
-2x^{2}+7x-3=0
এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=7 ab=-2\left(-3\right)=6
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -2x^{2}+ax+bx-3 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,6 2,3
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+6=7 2+3=5
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=6 b=1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 7।
\left(-2x^{2}+6x\right)+\left(x-3\right)
-2x^{2}+7x-3ক \left(-2x^{2}+6x\right)+\left(x-3\right) হিচাপে পুনৰ লিখক।
2x\left(-x+3\right)-\left(-x+3\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(-x+3\right)\left(2x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম -x+3ৰ গুণনীয়ক উলিয়াওক।
x=3 x=\frac{1}{2}
সমীকৰণ উলিয়াবলৈ, -x+3=0 আৰু 2x-1=0 সমাধান কৰক।
\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
চলক x, -1,1ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 2\left(x-1\right)\left(x+1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 2x-2,x+1,x-1 ৰ সাধাৰণ বিভাজক৷
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
x+1ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3+6x-6=\left(2x+2\right)x
2x-2ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
9x+3-6=\left(2x+2\right)x
9x লাভ কৰিবলৈ 3x আৰু 6x একত্ৰ কৰক৷
9x-3=\left(2x+2\right)x
-3 লাভ কৰিবলৈ 3-ৰ পৰা 6 বিয়োগ কৰক৷
9x-3=2x^{2}+2x
2x+2ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
9x-3-2x^{2}=2x
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
9x-3-2x^{2}-2x=0
দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
7x-3-2x^{2}=0
7x লাভ কৰিবলৈ 9x আৰু -2x একত্ৰ কৰক৷
-2x^{2}+7x-3=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -2, b-ৰ বাবে 7, c-ৰ বাবে -3 চাবষ্টিটিউট৷
x=\frac{-7±\sqrt{49-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
বৰ্গ 7৷
x=\frac{-7±\sqrt{49+8\left(-3\right)}}{2\left(-2\right)}
-4 বাৰ -2 পুৰণ কৰক৷
x=\frac{-7±\sqrt{49-24}}{2\left(-2\right)}
8 বাৰ -3 পুৰণ কৰক৷
x=\frac{-7±\sqrt{25}}{2\left(-2\right)}
-24 লৈ 49 যোগ কৰক৷
x=\frac{-7±5}{2\left(-2\right)}
25-ৰ বৰ্গমূল লওক৷
x=\frac{-7±5}{-4}
2 বাৰ -2 পুৰণ কৰক৷
x=-\frac{2}{-4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-7±5}{-4} সমাধান কৰক৷ 5 লৈ -7 যোগ কৰক৷
x=\frac{1}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-2}{-4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{12}{-4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-7±5}{-4} সমাধান কৰক৷ -7-ৰ পৰা 5 বিয়োগ কৰক৷
x=3
-4-ৰ দ্বাৰা -12 হৰণ কৰক৷
x=\frac{1}{2} x=3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
চলক x, -1,1ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 2\left(x-1\right)\left(x+1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 2x-2,x+1,x-1 ৰ সাধাৰণ বিভাজক৷
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
x+1ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3+6x-6=\left(2x+2\right)x
2x-2ক 3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
9x+3-6=\left(2x+2\right)x
9x লাভ কৰিবলৈ 3x আৰু 6x একত্ৰ কৰক৷
9x-3=\left(2x+2\right)x
-3 লাভ কৰিবলৈ 3-ৰ পৰা 6 বিয়োগ কৰক৷
9x-3=2x^{2}+2x
2x+2ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
9x-3-2x^{2}=2x
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
9x-3-2x^{2}-2x=0
দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
7x-3-2x^{2}=0
7x লাভ কৰিবলৈ 9x আৰু -2x একত্ৰ কৰক৷
7x-2x^{2}=3
উভয় কাষে 3 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
-2x^{2}+7x=3
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{-2x^{2}+7x}{-2}=\frac{3}{-2}
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{7}{-2}x=\frac{3}{-2}
-2-ৰ দ্বাৰা হৰণ কৰিলে -2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{7}{2}x=\frac{3}{-2}
-2-ৰ দ্বাৰা 7 হৰণ কৰক৷
x^{2}-\frac{7}{2}x=-\frac{3}{2}
-2-ৰ দ্বাৰা 3 হৰণ কৰক৷
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} হৰণ কৰক, -\frac{7}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{7}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{7}{4} বৰ্গ কৰক৷
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{49}{16} লৈ -\frac{3}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
উৎপাদক x^{2}-\frac{7}{2}x+\frac{49}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
সৰলীকৰণ৷
x=3 x=\frac{1}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{7}{4} যোগ কৰক৷