মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 2x-1 আৰু x+2ৰ সাধাৰণ গুণফল হৈছে \left(2x-1\right)\left(x+2\right)৷ \frac{3}{2x-1} বাৰ \frac{x+2}{x+2} পুৰণ কৰক৷ \frac{1}{x+2} বাৰ \frac{2x-1}{2x-1} পুৰণ কৰক৷
\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)}
যিহেতু \frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} আৰু \frac{2x-1}{\left(2x-1\right)\left(x+2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)}
3\left(x+2\right)-\left(2x-1\right)ত গুণনিয়ক কৰক৷
\frac{x+7}{\left(2x-1\right)\left(x+2\right)}
3x+6-2x+1ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{x+7}{2x^{2}+3x-2}
\left(2x-1\right)\left(x+2\right) বিস্তাৰ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 2x-1 আৰু x+2ৰ সাধাৰণ গুণফল হৈছে \left(2x-1\right)\left(x+2\right)৷ \frac{3}{2x-1} বাৰ \frac{x+2}{x+2} পুৰণ কৰক৷ \frac{1}{x+2} বাৰ \frac{2x-1}{2x-1} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)})
যিহেতু \frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} আৰু \frac{2x-1}{\left(2x-1\right)\left(x+2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)})
3\left(x+2\right)-\left(2x-1\right)ত গুণনিয়ক কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{\left(2x-1\right)\left(x+2\right)})
3x+6-2x+1ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+4x-x-2})
2x-1ৰ প্ৰতিটো পদক x+2ৰ প্ৰতিটো পদেৰে পূৰণ কৰি বিভাজন ধৰ্মটো প্ৰয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+3x-2})
3x লাভ কৰিবলৈ 4x আৰু -x একত্ৰ কৰক৷
\frac{\left(2x^{2}+3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1}-2)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(2x^{2}+3x^{1}-2\right)x^{1-1}-\left(x^{1}+7\right)\left(2\times 2x^{2-1}+3x^{1-1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(2x^{2}+3x^{1}-2\right)x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
সৰলীকৰণ৷
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
2x^{2}+3x^{1}-2 বাৰ x^{0} পুৰণ কৰক৷
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}\times 4x^{1}+x^{1}\times 3x^{0}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
x^{1}+7 বাৰ 4x^{1}+3x^{0} পুৰণ কৰক৷
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{1+1}+3x^{1}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{2}+3x^{1}+28x^{1}+21x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
সৰলীকৰণ৷
\frac{-2x^{2}-28x^{1}-23x^{0}}{\left(2x^{2}+3x^{1}-2\right)^{2}}
একে পদসমূহ একলগ কৰক।
\frac{-2x^{2}-28x-23x^{0}}{\left(2x^{2}+3x-2\right)^{2}}
যিকোনো পদৰ বাবে t, t^{1}=t।
\frac{-2x^{2}-28x-23}{\left(2x^{2}+3x-2\right)^{2}}
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।