x-ৰ বাবে সমাধান কৰক
x=-2
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\left(x+1\right)\left(2x-1\right)-2=\left(x-1\right)\left(x+1\right)
চলক x, -1,1ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-1\right)\left(x+1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-1,1-x^{2} ৰ সাধাৰণ বিভাজক৷
2x^{2}+x-1-2=\left(x-1\right)\left(x+1\right)
2x-1ৰ দ্বাৰা x+1 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
2x^{2}+x-3=\left(x-1\right)\left(x+1\right)
-3 লাভ কৰিবলৈ -1-ৰ পৰা 2 বিয়োগ কৰক৷
2x^{2}+x-3=x^{2}-1
\left(x-1\right)\left(x+1\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 1৷
2x^{2}+x-3-x^{2}=-1
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
x^{2}+x-3=-1
x^{2} লাভ কৰিবলৈ 2x^{2} আৰু -x^{2} একত্ৰ কৰক৷
x^{2}+x-3+1=0
উভয় কাষে 1 যোগ কৰক।
x^{2}+x-2=0
-2 লাভ কৰিবৰ বাবে -3 আৰু 1 যোগ কৰক৷
a+b=1 ab=-2
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}+x-2ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-1 b=2
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x-1\right)\left(x+2\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=1 x=-2
সমীকৰণ উলিয়াবলৈ, x-1=0 আৰু x+2=0 সমাধান কৰক।
x=-2
চলক x, 1ৰ সৈতে সমান হ’ব নোৱাৰে৷
\left(x+1\right)\left(2x-1\right)-2=\left(x-1\right)\left(x+1\right)
চলক x, -1,1ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-1\right)\left(x+1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-1,1-x^{2} ৰ সাধাৰণ বিভাজক৷
2x^{2}+x-1-2=\left(x-1\right)\left(x+1\right)
2x-1ৰ দ্বাৰা x+1 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
2x^{2}+x-3=\left(x-1\right)\left(x+1\right)
-3 লাভ কৰিবলৈ -1-ৰ পৰা 2 বিয়োগ কৰক৷
2x^{2}+x-3=x^{2}-1
\left(x-1\right)\left(x+1\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 1৷
2x^{2}+x-3-x^{2}=-1
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
x^{2}+x-3=-1
x^{2} লাভ কৰিবলৈ 2x^{2} আৰু -x^{2} একত্ৰ কৰক৷
x^{2}+x-3+1=0
উভয় কাষে 1 যোগ কৰক।
x^{2}+x-2=0
-2 লাভ কৰিবৰ বাবে -3 আৰু 1 যোগ কৰক৷
a+b=1 ab=1\left(-2\right)=-2
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-2 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-1 b=2
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x^{2}-x\right)+\left(2x-2\right)
x^{2}+x-2ক \left(x^{2}-x\right)+\left(2x-2\right) হিচাপে পুনৰ লিখক।
x\left(x-1\right)+2\left(x-1\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 2ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(x+2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
x=1 x=-2
সমীকৰণ উলিয়াবলৈ, x-1=0 আৰু x+2=0 সমাধান কৰক।
x=-2
চলক x, 1ৰ সৈতে সমান হ’ব নোৱাৰে৷
\left(x+1\right)\left(2x-1\right)-2=\left(x-1\right)\left(x+1\right)
চলক x, -1,1ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-1\right)\left(x+1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-1,1-x^{2} ৰ সাধাৰণ বিভাজক৷
2x^{2}+x-1-2=\left(x-1\right)\left(x+1\right)
2x-1ৰ দ্বাৰা x+1 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
2x^{2}+x-3=\left(x-1\right)\left(x+1\right)
-3 লাভ কৰিবলৈ -1-ৰ পৰা 2 বিয়োগ কৰক৷
2x^{2}+x-3=x^{2}-1
\left(x-1\right)\left(x+1\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 1৷
2x^{2}+x-3-x^{2}=-1
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
x^{2}+x-3=-1
x^{2} লাভ কৰিবলৈ 2x^{2} আৰু -x^{2} একত্ৰ কৰক৷
x^{2}+x-3+1=0
উভয় কাষে 1 যোগ কৰক।
x^{2}+x-2=0
-2 লাভ কৰিবৰ বাবে -3 আৰু 1 যোগ কৰক৷
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 1, c-ৰ বাবে -2 চাবষ্টিটিউট৷
x=\frac{-1±\sqrt{1-4\left(-2\right)}}{2}
বৰ্গ 1৷
x=\frac{-1±\sqrt{1+8}}{2}
-4 বাৰ -2 পুৰণ কৰক৷
x=\frac{-1±\sqrt{9}}{2}
8 লৈ 1 যোগ কৰক৷
x=\frac{-1±3}{2}
9-ৰ বৰ্গমূল লওক৷
x=\frac{2}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-1±3}{2} সমাধান কৰক৷ 3 লৈ -1 যোগ কৰক৷
x=1
2-ৰ দ্বাৰা 2 হৰণ কৰক৷
x=-\frac{4}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-1±3}{2} সমাধান কৰক৷ -1-ৰ পৰা 3 বিয়োগ কৰক৷
x=-2
2-ৰ দ্বাৰা -4 হৰণ কৰক৷
x=1 x=-2
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x=-2
চলক x, 1ৰ সৈতে সমান হ’ব নোৱাৰে৷
\left(x+1\right)\left(2x-1\right)-2=\left(x-1\right)\left(x+1\right)
চলক x, -1,1ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-1\right)\left(x+1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-1,1-x^{2} ৰ সাধাৰণ বিভাজক৷
2x^{2}+x-1-2=\left(x-1\right)\left(x+1\right)
2x-1ৰ দ্বাৰা x+1 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
2x^{2}+x-3=\left(x-1\right)\left(x+1\right)
-3 লাভ কৰিবলৈ -1-ৰ পৰা 2 বিয়োগ কৰক৷
2x^{2}+x-3=x^{2}-1
\left(x-1\right)\left(x+1\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 1৷
2x^{2}+x-3-x^{2}=-1
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
x^{2}+x-3=-1
x^{2} লাভ কৰিবলৈ 2x^{2} আৰু -x^{2} একত্ৰ কৰক৷
x^{2}+x=-1+3
উভয় কাষে 3 যোগ কৰক।
x^{2}+x=2
2 লাভ কৰিবৰ বাবে -1 আৰু 3 যোগ কৰক৷
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
1 হৰণ কৰক, \frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{2} বৰ্গ কৰক৷
x^{2}+x+\frac{1}{4}=\frac{9}{4}
\frac{1}{4} লৈ 2 যোগ কৰক৷
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
উৎপাদক x^{2}+x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
সৰলীকৰণ৷
x=1 x=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{2} বিয়োগ কৰক৷
x=-2
চলক x, 1ৰ সৈতে সমান হ’ব নোৱাৰে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}