মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-2x\times 2+2x\left(x-3\right)\times \frac{1}{2}=-2\times 6
চলক x, 0,3ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 2x\left(x-3\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3-x,2,x\left(3-x\right) ৰ সাধাৰণ বিভাজক৷
-4x+2x\left(x-3\right)\times \frac{1}{2}=-2\times 6
-4 লাভ কৰিবৰ বাবে -2 আৰু 2 পুৰণ কৰক৷
-4x+x\left(x-3\right)=-2\times 6
1 লাভ কৰিবৰ বাবে 2 আৰু \frac{1}{2} পুৰণ কৰক৷
-4x+x^{2}-3x=-2\times 6
xক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
-7x+x^{2}=-2\times 6
-7x লাভ কৰিবলৈ -4x আৰু -3x একত্ৰ কৰক৷
-7x+x^{2}=-12
-12 লাভ কৰিবৰ বাবে -2 আৰু 6 পুৰণ কৰক৷
-7x+x^{2}+12=0
উভয় কাষে 12 যোগ কৰক।
x^{2}-7x+12=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -7, c-ৰ বাবে 12 চাবষ্টিটিউট৷
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
বৰ্গ -7৷
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
-4 বাৰ 12 পুৰণ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
-48 লৈ 49 যোগ কৰক৷
x=\frac{-\left(-7\right)±1}{2}
1-ৰ বৰ্গমূল লওক৷
x=\frac{7±1}{2}
-7ৰ বিপৰীত হৈছে 7৷
x=\frac{8}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{7±1}{2} সমাধান কৰক৷ 1 লৈ 7 যোগ কৰক৷
x=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
x=\frac{6}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{7±1}{2} সমাধান কৰক৷ 7-ৰ পৰা 1 বিয়োগ কৰক৷
x=3
2-ৰ দ্বাৰা 6 হৰণ কৰক৷
x=4 x=3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x=4
চলক x, 3ৰ সৈতে সমান হ’ব নোৱাৰে৷
-2x\times 2+2x\left(x-3\right)\times \frac{1}{2}=-2\times 6
চলক x, 0,3ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 2x\left(x-3\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3-x,2,x\left(3-x\right) ৰ সাধাৰণ বিভাজক৷
-4x+2x\left(x-3\right)\times \frac{1}{2}=-2\times 6
-4 লাভ কৰিবৰ বাবে -2 আৰু 2 পুৰণ কৰক৷
-4x+x\left(x-3\right)=-2\times 6
1 লাভ কৰিবৰ বাবে 2 আৰু \frac{1}{2} পুৰণ কৰক৷
-4x+x^{2}-3x=-2\times 6
xক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
-7x+x^{2}=-2\times 6
-7x লাভ কৰিবলৈ -4x আৰু -3x একত্ৰ কৰক৷
-7x+x^{2}=-12
-12 লাভ কৰিবৰ বাবে -2 আৰু 6 পুৰণ কৰক৷
x^{2}-7x=-12
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
-7 হৰণ কৰক, -\frac{7}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{7}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{7}{2} বৰ্গ কৰক৷
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
\frac{49}{4} লৈ -12 যোগ কৰক৷
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
উৎপাদক x^{2}-7x+\frac{49}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
সৰলীকৰণ৷
x=4 x=3
সমীকৰণৰ দুয়োটা দিশতে \frac{7}{2} যোগ কৰক৷
x=4
চলক x, 3ৰ সৈতে সমান হ’ব নোৱাৰে৷