মূল্যায়ন
6+6i
প্ৰকৃত অংশ
6
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{12i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
ডিনোমিনেটৰৰ কমপ্লেক্স কনজুগেটৰ দ্বাৰা দুয়োটা নিউমেৰেটৰ আৰু ডিনোমিনেটৰ পুৰণ কৰক, 1-i৷
\frac{12i\left(1-i\right)}{1^{2}-i^{2}}
\left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷
\frac{12i\left(1-i\right)}{2}
সংজ্ঞা অনুযায়ী, i^{2} is -1৷ হৰ গণনা কৰক৷
\frac{12i\times 1+12\left(-1\right)i^{2}}{2}
12i বাৰ 1-i পুৰণ কৰক৷
\frac{12i\times 1+12\left(-1\right)\left(-1\right)}{2}
সংজ্ঞা অনুযায়ী, i^{2} is -1৷
\frac{12+12i}{2}
12i\times 1+12\left(-1\right)\left(-1\right)ত গুণনিয়ক কৰক৷ পদসমূহ ৰেকৰ্ড কৰক৷
6+6i
6+6i লাভ কৰিবলৈ 2ৰ দ্বাৰা 12+12i হৰণ কৰক৷
Re(\frac{12i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
হৰ 1-iৰ জটিল অনুবন্ধীৰ দ্বাৰা \frac{12i}{1+i}ৰ লব আৰু হৰ দুয়োটা পূৰণ কৰক৷
Re(\frac{12i\left(1-i\right)}{1^{2}-i^{2}})
\left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷
Re(\frac{12i\left(1-i\right)}{2})
সংজ্ঞা অনুযায়ী, i^{2} is -1৷ হৰ গণনা কৰক৷
Re(\frac{12i\times 1+12\left(-1\right)i^{2}}{2})
12i বাৰ 1-i পুৰণ কৰক৷
Re(\frac{12i\times 1+12\left(-1\right)\left(-1\right)}{2})
সংজ্ঞা অনুযায়ী, i^{2} is -1৷
Re(\frac{12+12i}{2})
12i\times 1+12\left(-1\right)\left(-1\right)ত গুণনিয়ক কৰক৷ পদসমূহ ৰেকৰ্ড কৰক৷
Re(6+6i)
6+6i লাভ কৰিবলৈ 2ৰ দ্বাৰা 12+12i হৰণ কৰক৷
6
6+6iৰ প্ৰকৃত অংশটো হৈছে 6৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}