x-ৰ বাবে সমাধান কৰক
x=-1
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x+2-4=\left(x-2\right)\left(x+2\right)
চলক x, -2,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-2\right)\left(x+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-2,x^{2}-4 ৰ সাধাৰণ বিভাজক৷
x-2=\left(x-2\right)\left(x+2\right)
-2 লাভ কৰিবলৈ 2-ৰ পৰা 4 বিয়োগ কৰক৷
x-2=x^{2}-4
\left(x-2\right)\left(x+2\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 2৷
x-2-x^{2}=-4
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
x-2-x^{2}+4=0
উভয় কাষে 4 যোগ কৰক।
x+2-x^{2}=0
2 লাভ কৰিবৰ বাবে -2 আৰু 4 যোগ কৰক৷
-x^{2}+x+2=0
এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=1 ab=-2=-2
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -x^{2}+ax+bx+2 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=2 b=-1
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(-x^{2}+2x\right)+\left(-x+2\right)
-x^{2}+x+2ক \left(-x^{2}+2x\right)+\left(-x+2\right) হিচাপে পুনৰ লিখক।
-x\left(x-2\right)-\left(x-2\right)
প্ৰথম গোটত -x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(x-2\right)\left(-x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-2ৰ গুণনীয়ক উলিয়াওক।
x=2 x=-1
সমীকৰণ উলিয়াবলৈ, x-2=0 আৰু -x-1=0 সমাধান কৰক।
x=-1
চলক x, 2ৰ সৈতে সমান হ’ব নোৱাৰে৷
x+2-4=\left(x-2\right)\left(x+2\right)
চলক x, -2,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-2\right)\left(x+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-2,x^{2}-4 ৰ সাধাৰণ বিভাজক৷
x-2=\left(x-2\right)\left(x+2\right)
-2 লাভ কৰিবলৈ 2-ৰ পৰা 4 বিয়োগ কৰক৷
x-2=x^{2}-4
\left(x-2\right)\left(x+2\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 2৷
x-2-x^{2}=-4
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
x-2-x^{2}+4=0
উভয় কাষে 4 যোগ কৰক।
x+2-x^{2}=0
2 লাভ কৰিবৰ বাবে -2 আৰু 4 যোগ কৰক৷
-x^{2}+x+2=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
সমীকৰণটো এটা মান্য ৰূপত থাকে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰত a-ৰ বাবে -1, b-ৰ বাবে 1, c-ৰ বাবে 2 চাবষ্টিটিউট কৰক, \frac{-b±\sqrt{b^{2}-4ac}}{2a} আৰু ইয়াক ± প্লাচ হ’লে সমাধান কৰক৷
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
বৰ্গ 1৷
x=\frac{-1±\sqrt{1+4\times 2}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-1±\sqrt{1+8}}{2\left(-1\right)}
4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-1±\sqrt{9}}{2\left(-1\right)}
8 লৈ 1 যোগ কৰক৷
x=\frac{-1±3}{2\left(-1\right)}
9-ৰ বৰ্গমূল লওক৷
x=\frac{-1±3}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{2}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-1±3}{-2} সমাধান কৰক৷ 3 লৈ -1 যোগ কৰক৷
x=-1
-2-ৰ দ্বাৰা 2 হৰণ কৰক৷
x=-\frac{4}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-1±3}{-2} সমাধান কৰক৷ -1-ৰ পৰা 3 বিয়োগ কৰক৷
x=2
-2-ৰ দ্বাৰা -4 হৰণ কৰক৷
x=-1 x=2
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x=-1
চলক x, 2ৰ সৈতে সমান হ’ব নোৱাৰে৷
x+2-4=\left(x-2\right)\left(x+2\right)
চলক x, -2,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ \left(x-2\right)\left(x+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x-2,x^{2}-4 ৰ সাধাৰণ বিভাজক৷
x-2=\left(x-2\right)\left(x+2\right)
-2 লাভ কৰিবলৈ 2-ৰ পৰা 4 বিয়োগ কৰক৷
x-2=x^{2}-4
\left(x-2\right)\left(x+2\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 2৷
x-2-x^{2}=-4
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
x-x^{2}=-4+2
উভয় কাষে 2 যোগ কৰক।
x-x^{2}=-2
-2 লাভ কৰিবৰ বাবে -4 আৰু 2 যোগ কৰক৷
-x^{2}+x=-2
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{-x^{2}+x}{-1}=-\frac{2}{-1}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{1}{-1}x=-\frac{2}{-1}
-1-ৰ দ্বাৰা হৰণ কৰিলে -1-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-x=-\frac{2}{-1}
-1-ৰ দ্বাৰা 1 হৰণ কৰক৷
x^{2}-x=2
-1-ৰ দ্বাৰা -2 হৰণ কৰক৷
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
-1 হৰণ কৰক, -\frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
x^{2}-x+\frac{1}{4}=\frac{9}{4}
\frac{1}{4} লৈ 2 যোগ কৰক৷
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
ফেক্টৰ x^{2}-x+\frac{1}{4}৷ সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা সুনিৰ্দিষ্ট বৰ্গ হয়, ই সদায়ে \left(x+\frac{b}{2}\right)^{2} ৰূপে ফেক্টৰ হয়৷
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
সৰলীকৰণ৷
x=2 x=-1
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷
x=-1
চলক x, 2ৰ সৈতে সমান হ’ব নোৱাৰে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}