মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
উৎপাদক x^{2}-1৷ উৎপাদক x^{2}+3x-4৷
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ \left(x-1\right)\left(x+1\right) আৰু \left(x-1\right)\left(x+4\right)ৰ সাধাৰণ গুণফল হৈছে \left(x-1\right)\left(x+1\right)\left(x+4\right)৷ \frac{1}{\left(x-1\right)\left(x+1\right)} বাৰ \frac{x+4}{x+4} পুৰণ কৰক৷ \frac{2}{\left(x-1\right)\left(x+4\right)} বাৰ \frac{x+1}{x+1} পুৰণ কৰক৷
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
যিহেতু \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} আৰু \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
x+4-2\left(x+1\right)ত গুণনিয়ক কৰক৷
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
x+4-2x-2ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
উৎপাদক x^{2}-2x-3৷
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ \left(x-1\right)\left(x+1\right)\left(x+4\right) আৰু \left(x-3\right)\left(x+1\right)ৰ সাধাৰণ গুণফল হৈছে \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)৷ \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} বাৰ \frac{x-3}{x-3} পুৰণ কৰক৷ \frac{1}{\left(x-3\right)\left(x+1\right)} বাৰ \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)} পুৰণ কৰক৷
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
যিহেতু \frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} আৰু \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)ত গুণনিয়ক কৰক৷
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
-x^{2}+3x+2x-6+x^{2}+4x-x-4ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right) বিস্তাৰ কৰক৷