মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{1}{x+3}-\frac{6\left(x+3\right)}{x+3}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 6 বাৰ \frac{x+3}{x+3} পুৰণ কৰক৷
\frac{1-6\left(x+3\right)}{x+3}
যিহেতু \frac{1}{x+3} আৰু \frac{6\left(x+3\right)}{x+3}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{1-6x-18}{x+3}
1-6\left(x+3\right)ত গুণনিয়ক কৰক৷
\frac{-17-6x}{x+3}
1-6x-18ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3}-\frac{6\left(x+3\right)}{x+3})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 6 বাৰ \frac{x+3}{x+3} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-6\left(x+3\right)}{x+3})
যিহেতু \frac{1}{x+3} আৰু \frac{6\left(x+3\right)}{x+3}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-6x-18}{x+3})
1-6\left(x+3\right)ত গুণনিয়ক কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-17-6x}{x+3})
1-6x-18ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-6x^{1}-17)-\left(-6x^{1}-17\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(x^{1}+3\right)\left(-6\right)x^{1-1}-\left(-6x^{1}-17\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(x^{1}+3\right)\left(-6\right)x^{0}-\left(-6x^{1}-17\right)x^{0}}{\left(x^{1}+3\right)^{2}}
গণনা কৰক৷
\frac{x^{1}\left(-6\right)x^{0}+3\left(-6\right)x^{0}-\left(-6x^{1}x^{0}-17x^{0}\right)}{\left(x^{1}+3\right)^{2}}
বিতৰক উপাদান বিস্তাৰ কৰক।
\frac{-6x^{1}+3\left(-6\right)x^{0}-\left(-6x^{1}-17x^{0}\right)}{\left(x^{1}+3\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{-6x^{1}-18x^{0}-\left(-6x^{1}-17x^{0}\right)}{\left(x^{1}+3\right)^{2}}
গণনা কৰক৷
\frac{-6x^{1}-18x^{0}-\left(-6x^{1}\right)-\left(-17x^{0}\right)}{\left(x^{1}+3\right)^{2}}
অনাবশ্যকীয় বন্ধনীসমূহ আঁতৰাওক৷
\frac{\left(-6-\left(-6\right)\right)x^{1}+\left(-18-\left(-17\right)\right)x^{0}}{\left(x^{1}+3\right)^{2}}
একে পদসমূহ একলগ কৰক।
\frac{-x^{0}}{\left(x^{1}+3\right)^{2}}
-6ৰ পৰা -6 আৰু -18ৰ পৰা -17 বিয়োগ কৰক৷
\frac{-x^{0}}{\left(x+3\right)^{2}}
যিকোনো পদৰ বাবে t, t^{1}=t।
\frac{-1}{\left(x+3\right)^{2}}
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।