x-ৰ বাবে সমাধান কৰক
x=-3
x=4
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{1}{2}x^{2}-\frac{1}{2}x=6
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
\frac{1}{2}x^{2}-\frac{1}{2}x-6=6-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
\frac{1}{2}x^{2}-\frac{1}{2}x-6=0
ইয়াৰ নিজৰ পৰা 6 বিয়োগ কৰিলে 0 থাকে৷
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে \frac{1}{2}, b-ৰ বাবে -\frac{1}{2}, c-ৰ বাবে -6 চাবষ্টিটিউট৷
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-2\left(-6\right)}}{2\times \frac{1}{2}}
-4 বাৰ \frac{1}{2} পুৰণ কৰক৷
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+12}}{2\times \frac{1}{2}}
-2 বাৰ -6 পুৰণ কৰক৷
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{49}{4}}}{2\times \frac{1}{2}}
12 লৈ \frac{1}{4} যোগ কৰক৷
x=\frac{-\left(-\frac{1}{2}\right)±\frac{7}{2}}{2\times \frac{1}{2}}
\frac{49}{4}-ৰ বৰ্গমূল লওক৷
x=\frac{\frac{1}{2}±\frac{7}{2}}{2\times \frac{1}{2}}
-\frac{1}{2}ৰ বিপৰীত হৈছে \frac{1}{2}৷
x=\frac{\frac{1}{2}±\frac{7}{2}}{1}
2 বাৰ \frac{1}{2} পুৰণ কৰক৷
x=\frac{4}{1}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{\frac{1}{2}±\frac{7}{2}}{1} সমাধান কৰক৷ এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{7}{2} লৈ \frac{1}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=4
1-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=-\frac{3}{1}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{\frac{1}{2}±\frac{7}{2}}{1} সমাধান কৰক৷ এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি \frac{1}{2}-ৰ পৰা \frac{7}{2} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
x=-3
1-ৰ দ্বাৰা -3 হৰণ কৰক৷
x=4 x=-3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
\frac{1}{2}x^{2}-\frac{1}{2}x=6
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{\frac{1}{2}x^{2}-\frac{1}{2}x}{\frac{1}{2}}=\frac{6}{\frac{1}{2}}
2-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{1}{2}}\right)x=\frac{6}{\frac{1}{2}}
\frac{1}{2}-ৰ দ্বাৰা হৰণ কৰিলে \frac{1}{2}-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-x=\frac{6}{\frac{1}{2}}
\frac{1}{2}-ৰ ব্যতিক্ৰমৰ দ্বাৰা -\frac{1}{2} পুৰণ কৰি \frac{1}{2}-ৰ দ্বাৰা -\frac{1}{2} হৰণ কৰক৷
x^{2}-x=12
\frac{1}{2}-ৰ ব্যতিক্ৰমৰ দ্বাৰা 6 পুৰণ কৰি \frac{1}{2}-ৰ দ্বাৰা 6 হৰণ কৰক৷
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=12+\left(-\frac{1}{2}\right)^{2}
-1 হৰণ কৰক, -\frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-x+\frac{1}{4}=12+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
x^{2}-x+\frac{1}{4}=\frac{49}{4}
\frac{1}{4} লৈ 12 যোগ কৰক৷
\left(x-\frac{1}{2}\right)^{2}=\frac{49}{4}
উৎপাদক x^{2}-x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{2}=\frac{7}{2} x-\frac{1}{2}=-\frac{7}{2}
সৰলীকৰণ৷
x=4 x=-3
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}