মূল্যায়ন
\frac{748}{27}\approx 27.703703704
কাৰক
\frac{2 ^ {2} \cdot 11 \cdot 17}{3 ^ {3}} = 27\frac{19}{27} = 27.703703703703702
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{1}{18}\left(\frac{192}{3}-\frac{256}{3}-24+52\right)-\left(4+\frac{32}{3}-6-36\right)
64ক ভগ্নাংশ \frac{192}{3}লৈ ৰূপান্তৰ কৰক৷
\frac{1}{18}\left(\frac{192-256}{3}-24+52\right)-\left(4+\frac{32}{3}-6-36\right)
যিহেতু \frac{192}{3} আৰু \frac{256}{3}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{1}{18}\left(-\frac{64}{3}-24+52\right)-\left(4+\frac{32}{3}-6-36\right)
-64 লাভ কৰিবলৈ 192-ৰ পৰা 256 বিয়োগ কৰক৷
\frac{1}{18}\left(-\frac{64}{3}-\frac{72}{3}+52\right)-\left(4+\frac{32}{3}-6-36\right)
24ক ভগ্নাংশ \frac{72}{3}লৈ ৰূপান্তৰ কৰক৷
\frac{1}{18}\left(\frac{-64-72}{3}+52\right)-\left(4+\frac{32}{3}-6-36\right)
যিহেতু -\frac{64}{3} আৰু \frac{72}{3}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{1}{18}\left(-\frac{136}{3}+52\right)-\left(4+\frac{32}{3}-6-36\right)
-136 লাভ কৰিবলৈ -64-ৰ পৰা 72 বিয়োগ কৰক৷
\frac{1}{18}\left(-\frac{136}{3}+\frac{156}{3}\right)-\left(4+\frac{32}{3}-6-36\right)
52ক ভগ্নাংশ \frac{156}{3}লৈ ৰূপান্তৰ কৰক৷
\frac{1}{18}\times \frac{-136+156}{3}-\left(4+\frac{32}{3}-6-36\right)
যিহেতু -\frac{136}{3} আৰু \frac{156}{3}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{1}{18}\times \frac{20}{3}-\left(4+\frac{32}{3}-6-36\right)
20 লাভ কৰিবৰ বাবে -136 আৰু 156 যোগ কৰক৷
\frac{1\times 20}{18\times 3}-\left(4+\frac{32}{3}-6-36\right)
নিউমাৰেটৰ সময়ক নিউমাৰেটৰৰে আৰু ডেনোমিনেটৰ সময়ক ডেনোমিনেটেৰে পূৰণ কৰি \frac{1}{18} বাৰ \frac{20}{3} পূৰণ কৰক৷
\frac{20}{54}-\left(4+\frac{32}{3}-6-36\right)
\frac{1\times 20}{18\times 3} ভগ্নাংশত গুণনিয়ক কৰক৷
\frac{10}{27}-\left(4+\frac{32}{3}-6-36\right)
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{20}{54} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
\frac{10}{27}-\left(\frac{12}{3}+\frac{32}{3}-6-36\right)
4ক ভগ্নাংশ \frac{12}{3}লৈ ৰূপান্তৰ কৰক৷
\frac{10}{27}-\left(\frac{12+32}{3}-6-36\right)
যিহেতু \frac{12}{3} আৰু \frac{32}{3}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{10}{27}-\left(\frac{44}{3}-6-36\right)
44 লাভ কৰিবৰ বাবে 12 আৰু 32 যোগ কৰক৷
\frac{10}{27}-\left(\frac{44}{3}-\frac{18}{3}-36\right)
6ক ভগ্নাংশ \frac{18}{3}লৈ ৰূপান্তৰ কৰক৷
\frac{10}{27}-\left(\frac{44-18}{3}-36\right)
যিহেতু \frac{44}{3} আৰু \frac{18}{3}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{10}{27}-\left(\frac{26}{3}-36\right)
26 লাভ কৰিবলৈ 44-ৰ পৰা 18 বিয়োগ কৰক৷
\frac{10}{27}-\left(\frac{26}{3}-\frac{108}{3}\right)
36ক ভগ্নাংশ \frac{108}{3}লৈ ৰূপান্তৰ কৰক৷
\frac{10}{27}-\frac{26-108}{3}
যিহেতু \frac{26}{3} আৰু \frac{108}{3}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{10}{27}-\left(-\frac{82}{3}\right)
-82 লাভ কৰিবলৈ 26-ৰ পৰা 108 বিয়োগ কৰক৷
\frac{10}{27}+\frac{82}{3}
-\frac{82}{3}ৰ বিপৰীত হৈছে \frac{82}{3}৷
\frac{10}{27}+\frac{738}{27}
27 আৰু 3ৰ সাধাৰণ গুণফল হৈছে 27৷ হৰ 27ৰ সৈতে ভগ্নাংশ কৰিবলৈ \frac{10}{27} আৰু \frac{82}{3} ৰূপান্তৰ কৰক৷
\frac{10+738}{27}
যিহেতু \frac{10}{27} আৰু \frac{738}{27}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{748}{27}
748 লাভ কৰিবৰ বাবে 10 আৰু 738 যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}