মূল্যায়ন
-\frac{1}{k+3}
ডিফাৰেনচিয়েট w.r.t. k
\frac{1}{\left(k+3\right)^{2}}
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{-15k^{2}}{15\left(k+3\right)k^{2}}
ইতিমধ্যে উপাদান নোহোৱা ৰাশিবোৰক উপাদান কৰক৷
\frac{-1}{k+3}
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে 15k^{2} সমান কৰক৷
\frac{\left(15k^{3}+45k^{2}\right)\frac{\mathrm{d}}{\mathrm{d}k}(-15k^{2})-\left(-15k^{2}\frac{\mathrm{d}}{\mathrm{d}k}(15k^{3}+45k^{2})\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(15k^{3}+45k^{2}\right)\times 2\left(-15\right)k^{2-1}-\left(-15k^{2}\left(3\times 15k^{3-1}+2\times 45k^{2-1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(15k^{3}+45k^{2}\right)\left(-30\right)k^{1}-\left(-15k^{2}\left(45k^{2}+90k^{1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
সৰলীকৰণ৷
\frac{15k^{3}\left(-30\right)k^{1}+45k^{2}\left(-30\right)k^{1}-\left(-15k^{2}\left(45k^{2}+90k^{1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
15k^{3}+45k^{2} বাৰ -30k^{1} পুৰণ কৰক৷
\frac{15k^{3}\left(-30\right)k^{1}+45k^{2}\left(-30\right)k^{1}-\left(-15k^{2}\times 45k^{2}-15k^{2}\times 90k^{1}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
-15k^{2} বাৰ 45k^{2}+90k^{1} পুৰণ কৰক৷
\frac{15\left(-30\right)k^{3+1}+45\left(-30\right)k^{2+1}-\left(-15\times 45k^{2+2}-15\times 90k^{2+1}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{-450k^{4}-1350k^{3}-\left(-675k^{4}-1350k^{3}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
সৰলীকৰণ৷
\frac{225k^{4}-9k^{2}}{\left(15k^{3}+45k^{2}\right)^{2}}
একে পদসমূহ একলগ কৰক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}