মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. a
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa}{a}+\frac{1}{a}}}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ a বাৰ \frac{a}{a} পুৰণ কৰক৷
\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa+1}{a}}}
যিহেতু \frac{aa}{a} আৰু \frac{1}{a}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{a^{2}+1}{a}}}
aa+1ত গুণনিয়ক কৰক৷
\frac{\frac{1}{a+1}}{a-\frac{a}{a^{2}+1}}
\frac{a^{2}+1}{a}-ৰ ব্যতিক্ৰমৰ দ্বাৰা 1 পুৰণ কৰি \frac{a^{2}+1}{a}-ৰ দ্বাৰা 1 হৰণ কৰক৷
\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)}{a^{2}+1}-\frac{a}{a^{2}+1}}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ a বাৰ \frac{a^{2}+1}{a^{2}+1} পুৰণ কৰক৷
\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)-a}{a^{2}+1}}
যিহেতু \frac{a\left(a^{2}+1\right)}{a^{2}+1} আৰু \frac{a}{a^{2}+1}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{\frac{1}{a+1}}{\frac{a^{3}+a-a}{a^{2}+1}}
a\left(a^{2}+1\right)-aত গুণনিয়ক কৰক৷
\frac{\frac{1}{a+1}}{\frac{a^{3}}{a^{2}+1}}
a^{3}+a-aৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{a^{2}+1}{\left(a+1\right)a^{3}}
\frac{a^{3}}{a^{2}+1}-ৰ ব্যতিক্ৰমৰ দ্বাৰা \frac{1}{a+1} পুৰণ কৰি \frac{a^{3}}{a^{2}+1}-ৰ দ্বাৰা \frac{1}{a+1} হৰণ কৰক৷
\frac{a^{2}+1}{a^{4}+a^{3}}
a+1ক a^{3}ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa}{a}+\frac{1}{a}}})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ a বাৰ \frac{a}{a} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa+1}{a}}})
যিহেতু \frac{aa}{a} আৰু \frac{1}{a}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{a^{2}+1}{a}}})
aa+1ত গুণনিয়ক কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{a}{a^{2}+1}})
\frac{a^{2}+1}{a}-ৰ ব্যতিক্ৰমৰ দ্বাৰা 1 পুৰণ কৰি \frac{a^{2}+1}{a}-ৰ দ্বাৰা 1 হৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)}{a^{2}+1}-\frac{a}{a^{2}+1}})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ a বাৰ \frac{a^{2}+1}{a^{2}+1} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)-a}{a^{2}+1}})
যিহেতু \frac{a\left(a^{2}+1\right)}{a^{2}+1} আৰু \frac{a}{a^{2}+1}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a^{3}+a-a}{a^{2}+1}})
a\left(a^{2}+1\right)-aত গুণনিয়ক কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a^{3}}{a^{2}+1}})
a^{3}+a-aৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+1}{\left(a+1\right)a^{3}})
\frac{a^{3}}{a^{2}+1}-ৰ ব্যতিক্ৰমৰ দ্বাৰা \frac{1}{a+1} পুৰণ কৰি \frac{a^{3}}{a^{2}+1}-ৰ দ্বাৰা \frac{1}{a+1} হৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+1}{a^{4}+a^{3}})
a+1ক a^{3}ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
\frac{\left(a^{4}+a^{3}\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}+1)-\left(a^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3})}{\left(a^{4}+a^{3}\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\left(a^{4}+a^{3}\right)\times 2a^{2-1}-\left(a^{2}+1\right)\left(4a^{4-1}+3a^{3-1}\right)}{\left(a^{4}+a^{3}\right)^{2}}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
\frac{\left(a^{4}+a^{3}\right)\times 2a^{1}-\left(a^{2}+1\right)\left(4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
সৰলীকৰণ৷
\frac{a^{4}\times 2a^{1}+a^{3}\times 2a^{1}-\left(a^{2}+1\right)\left(4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
a^{4}+a^{3} বাৰ 2a^{1} পুৰণ কৰক৷
\frac{a^{4}\times 2a^{1}+a^{3}\times 2a^{1}-\left(a^{2}\times 4a^{3}+a^{2}\times 3a^{2}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
a^{2}+1 বাৰ 4a^{3}+3a^{2} পুৰণ কৰক৷
\frac{2a^{4+1}+2a^{3+1}-\left(4a^{2+3}+3a^{2+2}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
\frac{2a^{5}+2a^{4}-\left(4a^{5}+3a^{4}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
সৰলীকৰণ৷
\frac{-2a^{5}-a^{4}-4a^{3}-3a^{2}}{\left(a^{4}+a^{3}\right)^{2}}
একে পদসমূহ একলগ কৰক।