r-ৰ বাবে সমাধান কৰক
\left\{\begin{matrix}r=\frac{x}{\cos(t\omega )}\text{, }&\left(\nexists n_{1}\in \mathrm{Z}\text{ : }\omega =\frac{\pi n_{1}}{t}+\frac{\pi }{2t}\text{ and }x\neq 0\right)\text{ or }\left(t=0\text{ and }x\neq 0\right)\\r\neq 0\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }n_{1}=\frac{t\omega }{\pi }-\frac{1}{2}\text{, }not(t=0)\text{ and }t\neq 0\text{ and }x=0\end{matrix}\right.
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
r\cos(\omega t)=x
চলক r, 0ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ r-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
\cos(t\omega )r=x
সমীকৰণটো মান্য ৰূপত আছে৷
\frac{\cos(t\omega )r}{\cos(t\omega )}=\frac{x}{\cos(t\omega )}
\cos(\omega t)-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
r=\frac{x}{\cos(t\omega )}
\cos(\omega t)-ৰ দ্বাৰা হৰণ কৰিলে \cos(\omega t)-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
r=\frac{x}{\cos(t\omega )}\text{, }r\neq 0
চলক r, 0ৰ সৈতে সমান হ’ব নোৱাৰে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}