حل مسائل V
\left\{\begin{matrix}V=\frac{y}{\left(3X+7\right)\left(X-1\right)^{2}}\text{, }&X\neq 1\text{ and }X\neq -\frac{7}{3}\\V\in \mathrm{R}\text{, }&\left(X=-\frac{7}{3}\text{ or }X=1\right)\text{ and }y=0\end{matrix}\right.
رسم بياني
مشاركة
تم النسخ للحافظة
y=\left(3X+7\right)\left(X^{2}-2X+1\right)V
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(X-1\right)^{2}.
y=\left(3X^{3}+X^{2}-11X+7\right)V
استخدم خاصية التوزيع لضرب 3X+7 في X^{2}-2X+1 وجمع الحدود المتشابهة.
y=3X^{3}V+X^{2}V-11XV+7V
استخدم خاصية التوزيع لضرب 3X^{3}+X^{2}-11X+7 في V.
3X^{3}V+X^{2}V-11XV+7V=y
قم بتبديل الطرفين بحيث تكون كل الحدود المتغيرة على اليسار.
\left(3X^{3}+X^{2}-11X+7\right)V=y
اجمع كل الحدود التي تحتوي على V.
\frac{\left(3X^{3}+X^{2}-11X+7\right)V}{3X^{3}+X^{2}-11X+7}=\frac{y}{3X^{3}+X^{2}-11X+7}
قسمة طرفي المعادلة على 3X^{3}+X^{2}-11X+7.
V=\frac{y}{3X^{3}+X^{2}-11X+7}
القسمة على 3X^{3}+X^{2}-11X+7 تؤدي إلى التراجع عن الضرب في 3X^{3}+X^{2}-11X+7.
V=\frac{y}{\left(3X+7\right)\left(X-1\right)^{2}}
اقسم y على 3X^{3}+X^{2}-11X+7.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}