تجاوز إلى المحتوى الرئيسي
حل مسائل b
Tick mark Image
حل مسائل a
Tick mark Image

مسائل مماثلة من البحث في الويب

مشاركة

a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
احذف جذور مقام ال\frac{\sqrt{3}-1}{\sqrt{3}+1} بضرب البسط والمقام ب\sqrt{3}-1.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
ضع في الحسبان \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). يمكن تحويل عملية الضرب إلى فرق بين المربعات باستخدام القاعدة: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}
مربع \sqrt{3}. مربع 1.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}
اطرح 1 من 3 لتحصل على 2.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)^{2}}{2}
اضرب \sqrt{3}-1 في \sqrt{3}-1 لتحصل على \left(\sqrt{3}-1\right)^{2}.
a+b\sqrt{3}=\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(\sqrt{3}-1\right)^{2}.
a+b\sqrt{3}=\frac{3-2\sqrt{3}+1}{2}
إيجاد مربع \sqrt{3} هو 3.
a+b\sqrt{3}=\frac{4-2\sqrt{3}}{2}
اجمع 3 مع 1 لتحصل على 4.
a+b\sqrt{3}=2-\sqrt{3}
قسمة كل جزء من 4-2\sqrt{3} على 2 للحصول على 2-\sqrt{3}.
b\sqrt{3}=2-\sqrt{3}-a
اطرح a من الطرفين.
\sqrt{3}b=-a+2-\sqrt{3}
المعادلة بالصيغة العامة.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
قسمة طرفي المعادلة على \sqrt{3}.
b=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
القسمة على \sqrt{3} تؤدي إلى التراجع عن الضرب في \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+2-\sqrt{3}\right)}{3}
اقسم 2-\sqrt{3}-a على \sqrt{3}.