حل مسائل B (complex solution)
\left\{\begin{matrix}B=\frac{16\times \left(\frac{25x-1}{20x-1}\right)^{2}}{25S}\text{, }&x\neq \frac{1}{20}\text{ and }S\neq 0\\B\in \mathrm{C}\text{, }&S=0\text{ and }x=\frac{1}{25}\end{matrix}\right.
حل مسائل S (complex solution)
\left\{\begin{matrix}S=\frac{16\times \left(\frac{25x-1}{20x-1}\right)^{2}}{25B}\text{, }&x\neq \frac{1}{20}\text{ and }B\neq 0\\S\in \mathrm{C}\text{, }&B=0\text{ and }x=\frac{1}{25}\end{matrix}\right.
حل مسائل B
\left\{\begin{matrix}B=\frac{16\times \left(\frac{25x-1}{20x-1}\right)^{2}}{25S}\text{, }&x\neq \frac{1}{20}\text{ and }S\neq 0\\B\in \mathrm{R}\text{, }&S=0\text{ and }x=\frac{1}{25}\end{matrix}\right.
حل مسائل S
\left\{\begin{matrix}S=\frac{16\times \left(\frac{25x-1}{20x-1}\right)^{2}}{25B}\text{, }&x\neq \frac{1}{20}\text{ and }B\neq 0\\S\in \mathrm{R}\text{, }&B=0\text{ and }x=\frac{1}{25}\end{matrix}\right.
رسم بياني
مشاركة
تم النسخ للحافظة
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(0.04-x\right)^{2}.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(0.05-x\right)^{2}.
SB=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
المعادلة بالصيغة العامة.
\frac{SB}{S}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
قسمة طرفي المعادلة على S.
B=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
القسمة على S تؤدي إلى التراجع عن الضرب في S.
B=\frac{16\left(25x-1\right)^{2}}{25S\left(20x-1\right)^{2}}
اقسم \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} على S.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(0.04-x\right)^{2}.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(0.05-x\right)^{2}.
BS=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
المعادلة بالصيغة العامة.
\frac{BS}{B}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
قسمة طرفي المعادلة على B.
S=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
القسمة على B تؤدي إلى التراجع عن الضرب في B.
S=\frac{16\left(25x-1\right)^{2}}{25B\left(20x-1\right)^{2}}
اقسم \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} على B.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(0.04-x\right)^{2}.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(0.05-x\right)^{2}.
SB=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
المعادلة بالصيغة العامة.
\frac{SB}{S}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
قسمة طرفي المعادلة على S.
B=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
القسمة على S تؤدي إلى التراجع عن الضرب في S.
B=\frac{16\left(25x-1\right)^{2}}{25S\left(20x-1\right)^{2}}
اقسم \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} على S.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(0.04-x\right)^{2}.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
استخدم نظرية ثنائية الحد \left(a-b\right)^{2}=a^{2}-2ab+b^{2} لتوسيع \left(0.05-x\right)^{2}.
BS=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
المعادلة بالصيغة العامة.
\frac{BS}{B}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
قسمة طرفي المعادلة على B.
S=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
القسمة على B تؤدي إلى التراجع عن الضرب في B.
S=\frac{16\left(25x-1\right)^{2}}{25B\left(20x-1\right)^{2}}
اقسم \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} على B.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}