تجاوز إلى المحتوى الرئيسي
حل مسائل x
Tick mark Image
حل مسائل x (complex solution)
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

6x^{4}-5xx^{2}-5x-6=0
أعد ترتيب المعادلة لتصبح في الصيغة العامة. رتب الحدود من أكبر أس إلى أصغر أس.
±1,±2,±3,±6,±\frac{1}{2},±\frac{3}{2},±\frac{1}{3},±\frac{2}{3},±\frac{1}{6}
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال-6 الثابت وq المعامل الرائدة 6. سرد جميع المرشحين \frac{p}{q}.
x=-\frac{2}{3}
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
2x^{3}-3x^{2}+2x-3=0
بواسطة المعامل نظرية ، يعد الx-k عاملا لحدود الشكل لكل k جذر. اقسم -5xx^{2}-5x+6x^{4}-6 على 3\left(x+\frac{2}{3}\right)=3x+2 لتحصل على 2x^{3}-3x^{2}+2x-3. حل المعادلة التي يساويها الناتج 0.
±\frac{3}{2},±3,±\frac{1}{2},±1
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال-3 الثابت وq المعامل الرائدة 2. سرد جميع المرشحين \frac{p}{q}.
x=\frac{3}{2}
يمكنك العثور على أحد هذه الجذور من خلال محاولة إدخال كل القيم الصحيحة بدءاً من القيمة المطلقة الصغرى. إذا لم يتم العثور على جذور صحيحة، فجرب استخدام الأعداد الكسرية.
x^{2}+1=0
بواسطة المعامل نظرية ، يعد الx-k عاملا لحدود الشكل لكل k جذر. اقسم 2x^{3}-3x^{2}+2x-3 على 2\left(x-\frac{3}{2}\right)=2x-3 لتحصل على x^{2}+1. حل المعادلة التي يساويها الناتج 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
يمكن حل كل معادلات النموذج ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. استبدل 1 بـ a، و0 بـ b و1 بـ c في الصيغة التربيعية.
x=\frac{0±\sqrt{-4}}{2}
قم بإجراء العمليات الحسابية.
x\in \emptyset
نظراً لعدم تعريف الجذر التربيعي لرقم سالب في الحقل الحقيقي، لا توجد حلول.
x=-\frac{2}{3} x=\frac{3}{2}
إدراج كافة الحلول التي تم العثور عليها.