حل مسائل x
x=1
x=-1
رسم بياني
مشاركة
تم النسخ للحافظة
3-4x^{2}-5=-6x^{2}
اطرح 5 من الطرفين.
-2-4x^{2}=-6x^{2}
اطرح 5 من 3 لتحصل على -2.
-2-4x^{2}+6x^{2}=0
إضافة 6x^{2} لكلا الجانبين.
-2+2x^{2}=0
اجمع -4x^{2} مع 6x^{2} لتحصل على 2x^{2}.
-1+x^{2}=0
قسمة طرفي المعادلة على 2.
\left(x-1\right)\left(x+1\right)=0
ضع في الحسبان -1+x^{2}. إعادة كتابة -1+x^{2} ك x^{2}-1^{2}. يمكن تحليل الفرق بين المربعات باستخدام القاعدة: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
للعثور علي حلول المعادلات ، قم بحل x-1=0 و x+1=0.
3-4x^{2}+6x^{2}=5
إضافة 6x^{2} لكلا الجانبين.
3+2x^{2}=5
اجمع -4x^{2} مع 6x^{2} لتحصل على 2x^{2}.
2x^{2}=5-3
اطرح 3 من الطرفين.
2x^{2}=2
اطرح 3 من 5 لتحصل على 2.
x^{2}=\frac{2}{2}
قسمة طرفي المعادلة على 2.
x^{2}=1
اقسم 2 على 2 لتحصل على 1.
x=1 x=-1
استخدم الجذر التربيعي لطرفي المعادلة.
3-4x^{2}-5=-6x^{2}
اطرح 5 من الطرفين.
-2-4x^{2}=-6x^{2}
اطرح 5 من 3 لتحصل على -2.
-2-4x^{2}+6x^{2}=0
إضافة 6x^{2} لكلا الجانبين.
-2+2x^{2}=0
اجمع -4x^{2} مع 6x^{2} لتحصل على 2x^{2}.
2x^{2}-2=0
لا يزال من الممكن حل المعادلات من الدرجة الثانية كهذه المعادلة، التي يوجد بها الحد x^{2} ولا يوجد بها الحد x، باستخدام الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}، بمجرد وضعها في الصيغة العامة: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-2\right)}}{2\times 2}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 2 وعن b بالقيمة 0 وعن c بالقيمة -2 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-2\right)}}{2\times 2}
مربع 0.
x=\frac{0±\sqrt{-8\left(-2\right)}}{2\times 2}
اضرب -4 في 2.
x=\frac{0±\sqrt{16}}{2\times 2}
اضرب -8 في -2.
x=\frac{0±4}{2\times 2}
استخدم الجذر التربيعي للعدد 16.
x=\frac{0±4}{4}
اضرب 2 في 2.
x=1
حل المعادلة x=\frac{0±4}{4} الآن عندما يكون ± موجباً. اقسم 4 على 4.
x=-1
حل المعادلة x=\frac{0±4}{4} الآن عندما يكون ± سالباً. اقسم -4 على 4.
x=1 x=-1
تم حل المعادلة الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}